# BC COMS 1016: Intro to Comp Thinking \& Data Science 

## Lecture 11 ? Monty Hall \& Probability



## Announcements

- HW04 - Applying Functions and Iteration
- Due Tuesday (03/01)
- Lab 04 - Lab 4 - Simulations
- Due Monday (02/28)
- Checkpoint/Project 1:
- Paired assignment that covers the previous section of the course material
- Due Thursday (03/03)
- Recommended to complete first 8 questions by today/tomorrow
- If you want a partner, stay after class



## Control Statements

These statements control the sequence of computations that are performed

- The keywords if and for begin control statements
- The purpose of if is to define functions that choose different behavior based on their arguments
- The purpose of for is to perform a computation for every element in a list or array
- for name in sequence:

BODY where we use the value in the name


## Experimentation

- Why do we want to run experiments?
- Test a hypothesis
- What could a hypothesis be in our previous (coin flipping) experiment?
- Is a coin loaded, i.e. not fair
- ....


## How to run an experiment/test a hypothesis

- Step 1: Choose a measurement/statistic to study
- Textbook lingo: what to simulate
- Step 2: Figure out how to compute the measurement
- Textbook lingo: figure out how to simulate the statistic
- Step 3: Choose how many times to simulate the statistics
- Textbook lingo: Number of Repetitions
- Step 4: Do it!
- Textbook lingo: simulate multiple values


## How to run an experiment/test a hypothesis

- Step 1: Choose a measurement/statistic to study
- Textbook lingo: what to simulate
- Step 2: Figure out how to compute the measurement
- Textbook lingo: figure out how to simulate the statistic
- Step 3: Choose how many times to simulate the statistics
- Textbook lingo: Number of Repetitions
- Step 4: Do it!
- Textbook lingo: simulate multiple values


## How to run an experiment/test a hypothesis

- Step 1: Choose a measurement/statistic to study
- Textbook lingo: what to simulate
- Step 2: Figure out how to compute the measurement
- Textbook lingo: figure out how to simulate the statistic
- Step 3: Choose how many times to simulate the statistics
- Textbook lingo: Number of Repetitions
- Step 4: Do it!
- Textbook lingo: simulate multiple values


## How to run an experiment/test a hypothesis

- Step 1: Choose a measurement/statistic to study
- Textbook lingo: what to simulate
- Step 2: Figure out how to compute the measurement
- Textbook lingo: figure out how to simulate the statistic
- Step 3: Choose how many times to simulate the statistics
- Textbook lingo: Number of Repetitions
- Step 4: Do it!
- Textbook lingo: simulate multiple values


## How to run an experiment/test a hypothesis

- Step 1: Choose a measurement/statistic to study
- Textbook lingo: what to simulate
- Step 2: Figure out how to compute the measurement
- Textbook lingo: figure out how to simulate the statistic
- Step 3: Choose how many times to simulate the statistics
- Textbook lingo: Number of Repetitions
- Step 4: Do it!
- Textbook lingo: simulate multiple values


## How to Simulate multiple values

- Collection array
- empty array to store the simulated values/statistic
- make_array()
- Create a "repetitions sequence":
- A sequence as long as the number of iterations. For $n$ repitions, use the sequence np.arange(n)
- Create a for loop. For each element:
- Simulate one value by using the function you wrote in Step 2.
- Augment the collection array with this simulated value.



## Monty Hall Problem


https://probabilityandstats.files.wordpress.com/2017/05/monty-hall-pic-1.jpg

## Monty Hall Problem


https://en.wikipedia.org/wiki/Monty_Hall_problem


## Basics

- Lowest value: 0
- Chance of event that is impossible
- Highest value: 1 (or 100\%)
- Chance of event that is certain
- If an event has chance $70 \%$, then the chance that it doesn't happen is:
- 100\% - 70\% = 30\%
- $1-0.7=0.3$
- We call this the Complement


## Equally Likely Outcomes

## Assuming all outcomes are equally likely, the chance of an event $A$ is:

$P(A)=\frac{\text { number of outcomes that make A happen }}{\text { total number of outcomes }}$

- I have 3 cards: ace of hearts, king of diamonds, and queen of spades
- I shuffle them and draw two cards at random without replacement.
- What is the chance that I get the Queen followed by the King?
- What is the chance that I get the Queen followed by the King?
1.Queen, King
2.Queen, Ace
3.Ace, King
4.Ace, Queen
5.King, Queen
6.King, Ace
- What is the chance that I get the Queen followed by the King?
1.Queen, King
2.Queen, Ace
3.Ace, King
4.Ace, Queen
5.King, Queen
6.King, Ace


## Approach 1: Enumerate all outcomes

- What is the chance that I get the Queen followed by the King?
1.Queen, King
2.Queen, Ace
3.Ace, King
4.Ace, Queen
5.King, Queen
6.King, Ace
- Answer: $1 / 6$

Approach 2: Probabilities of the sequences

- What is the chance that I get the Queen followed by the King?
- What's the probability I first draw Queen and what's the probability I then draw King
- Step 1:
- Draw Queen from \{Ace, King, Queen\}
- What's the probability of drawing Queen?

1/3

- Step 2 :
- Draw King from \{King, Ace\}
- What's the probability of drawing King?
$1 / 2$
- Combining them:
- What's $1 / 2$ of $1 / 3$ ?

1/6

## Multiplication Rule

Chance that two events $A$ and $B$ both happen
$=P(A$ happens $) \times P(B$ happens given that $A$ has happened)

- The answer is less than or equal to each of the two chances being multiplied
- The more conditions you have to satisfy, the less likely you are to satisfy them all


## Addition Rule

If event $A$ can happen in exactly one of two ways, then

$$
P(A)=P(\text { first way })+P(\text { second way })
$$

- The answer is greater than or equal to the chance of each individual way


## Complement: At Least One Head

- What the probability that I flip coins and I get at least one head?
- In 3 tosses:
- Any outcome except TTT (tails, tails, tails)
- $P($ TTT $)=(1 / 2) \times(1 / 2) \times(1 / 2)=1 / 8$
- $P($ at least one head $)=1-P(T T T)=1-(1 / 8)=87.5 \%$
- In 10 tosses:
- $1-(1 / 2)^{* *} 10 \cong 99.9 \%$

