BC COMS 1016: Intro to Comp Thinking \& Data Science

Lecture 14 Hypothesis Testing

03/10/22

Announcements

- Lab 05 - Assessing Models: Examining the Therapeutic Touch
- Due tomorrow (03/11)
- HW05 - Probability, Simulation, Estimation, and Assessing Models
- Due tomorrow (03/11)
- Project 1:
- Almost done grading
- Project 2 (midterm):
- Released after spring break

Complement: be careful

- $A=$ the event of sampling (with replacement) 5 aces in a row from a deck of card. $\mathrm{P}(\mathrm{A})=$?
- $\frac{1}{52} \times \frac{1}{52} \times \frac{1}{52} \times \frac{1}{52} \times \frac{1}{52}=\frac{1}{52}^{5}$
- What is the complement of A?

1. Drawing 5 cards and never getting an ace
2. Drawing 5 cards and not getting 5 aces

Complement: be careful

- $B=$ the event of sampling (with replacement) 5 cards and never getting an ace. $\mathrm{P}(\mathrm{B})=$?
- $\frac{48}{52} \times \frac{48}{52} \times \frac{48}{52} \times \frac{48}{52} \times \frac{48}{52}=\frac{48^{5}}{52}$
$P(A)=\frac{1}{52}^{5} ; P(B)=\frac{48^{5}}{52}$
- Is $P(A)=1-P(B)$?
- $\mathrm{P}(\mathrm{A})=\frac{1}{52}^{5} \cong \frac{1}{380 M}$
- $\mathrm{P}(\mathrm{B})=\frac{48^{5}}{52} \cong \frac{254 M}{380 M}$

Complement: be careful

- $A=$ the event of sampling (with replacement) 5 aces in a row from a deck of card. $\mathrm{P}(\mathrm{A})=$?
- $\frac{1}{52} \times \frac{1}{52} \times \frac{1}{52} \times \frac{1}{52} \times \frac{1}{52} .=\frac{1}{52}^{5}$
- The complement of A is:

1. Drawing 5 cards and never getting an ace
2. $\mathrm{P}(\operatorname{not} \mathrm{A})=1-\frac{1}{52}^{5} \cong \frac{380 M-1}{380 M}$

Why bother sampling?

Probability

Statistics

Sampling

Inference

- Statistical Inference:
- Making conclusions based on data in random samples
- Example:
- Use the data to guess the value of an unknown number

Depends on the random sample

- Create an estimate of an unknown quantity

Terminology

- Parameter
- Numerical quantity associated with the population
- Statistic
- A number calculated from the sample
- A statistic can be used as an estimator of a parameter

Probability distribution of a statistic

- Values of a statistic vary because random samples vary
- "Sampling distribution" or "probability distribution" of the statistic:
- All possible values of a statistic
- and all corresponding probabilities
- Can be hard to calculate:
- Either have to do math
- Or generate all possible samples and calculate the statistic based on the each sample

Empirical Distribution of a Statistic

- Based on simulated values of a statistic
- Consists of all observed values of the statistic,
- and the proportion of times each value appeared
- Good approximation to the probability distribution of a statistic
- If the number of repetitions in the simulation is large

Choosing Between Two Viewpoints

- Based on data:
- "Chocolate has no effect on cardiac disease"
- "Yes, it does"
- Questions that we will consider:
- Were data was drawn?
- How the data was drawn?
- What can we conclude from the data?

Models

- A model is a set of assumptions about the data
- In data science, many models involve assumptions about processes that involve randomness:
- "Chance models"
- Key question: does the model fit the data?

Approach to Assessing Models

- If we can simulate data according to the assumptions of the model, we can learn what the model predicts
- We can compare the model's predictions to the observed data
- If the data and the model's predictions are not consistent, that is evidence against the model

Swain vs. Alabama, 1965

- Talladega County, Alabama
- Robert Swain, black man convicted of crime
- Appeal: one factor was all white-jury
- Only men 21 years or older were allowed to serve
- 26% of this population were black
- Swain's jury panel consisted of 100 men
- 8 men on the panel were black

Supreme Court Ruling [in English]

- About disparities between the percentages in the eligible population and the jury panel, the Supreme Court wrote:
- "... the overall percentage disparity has been small and reflects no studied attempt to include or exclude a specified number of Negros"
- Supreme Court denied Robert Swain’s appeal

Supreme Court Ruling [in Data]

- Paraphrase: $8 / 100$ is less than 26%, but not different enough to show Black men were systematically excluded
- Question: is $8 / 100$ a realistic outcome if the jury panel selection process were truly unbiased?

Sampling from a Distribution

- Sample at random from a categorical distribution
sample_proportions(sample_size, pop_distribution)
- Samples at random from the population
- Returns an array containing the distribution of the categories in the sample

Steps in Assessing a Model

- Choose a statistic that will help you decide whether the data support the model or an alternative view of the world
- Simulate statistic under the assumptions of the model
- Draw a histogram of the simulated values
- This is the model's prediction for how the statistic should come out
- Compute the statistic from the sample in the study
- If the two are not consistent => evidence against the model
- If the two are consistent => data supports the model so far

Mendel's genetic model

- Pea plants of a particular kind
- Each one has either purple flowers or white flowers
- Mendel's model:
- Each plant is purple-flowering with chance 75%, regardless of the colors of the other plants
- Question:
- Is the model good or not?

Choose a Statistic

- Take a sample, see what percent are purpleflowering
- If that percent is much larger or much smaller than 75 , that is evidence against the model
- Distance from 75 is key
- Statistic:
- | sample percent of purple-flowering plants - 75 |
- If the statistic is large, that is evidence against the model

Model and Alternative

- Jury Selection:
- Model: The people on the jury panels were selected at random from the eligible population
- Alternative viewpoint: No, they weren't
- Genetics:
- Model: Each plant has a 75\% chance of having purple flowers
- Alternative viewpoint: No, it doesnt

Steps in Assessing a Model

- Choose a statistic to measure the "discrepancy" between model and data
- Simulate the statistic under the model's assumptions
- Compare the data to the model's predictions:
- Draw a histogram of simulated values of the statistic
- Compute the observed statistic from the real sample
- If the observed statistic is far from the histogram, that is evidence against the model

Homework

- Reading 11.2 on your own
- Multiple Categories
- Tomorrow's lecture:
- 11.3-11.4
- A/B Testing (Chapter 12)

