BC COMS 1016: Intro to Comp Thinking & Data Science

Lecture 15 P-values & Comparing Two Samples

- Today's office hours cancelled but I'll still around a bit
- Lab 06 Inference and the Death Penalty
 - Due Monday 03/28
- HW06 <u>Testing Hypotheses</u>
 - Due Thursday 03/31

Mid semester survey

- Thanks for your feedback!!!
 - Form is staying open
- Homeworks will be released more timely
 - HW06, HW07, HW08 are all already posted
- Moved HW deadlines to Thursday
 - Might move hw07 back, depending on our progress in class
- Speak up in lecture:
 - No news means good news
 - If you have a question or are confused, other people are too

HW04 question 1.4

Question 1.4. Shoumik wants to see how Columbia did against every opponent during the 2019 season. Using the final_scores table, assign results to an array of True and False values that correspond to whether or not Columbia won. Add the results array to the final_scores table, and assign this to final_scores_with_results. Then, respectively assign the number of wins and losses Columbia had to cu_wins and cu_losses.

If your code printed out the correct line: 3 wins and 7 losses but you got points off the autograder because you used strings and not Booleans, let us know and we'll fix the grade

HW02 question 1.6

If the autograder failed because the order of the tables is wrong, let us know

Assessing Models

munn

- A model is a set of assumptions about the data
- In data science, many models involve assumptions about processes that involve randomness:
 - "Chance models"
- Key question: does the model fit the data?

- If we can simulate data according to the assumptions of the model, we can learn what the model predicts
- We can compare the model's predictions (simulations) to the observed data
 - Here, "observed data" == what actually happened
- If the data and the model's predictions are not consistent, that is evidence against the model

- Choose a statistic to measure the "discrepancy" between model and data
- Simulate the statistic under the model's assumptions
- Compare the data to the model's predictions:
 - Draw a histogram of simulated values of the statistic
 - Compute the observed statistic from the real sample
- If the observed statistic is far from the histogram, that is evidence against the model

Comparing Distributions

Comparing Distributions

RACIAL AND ETHNIC DISPARITIES IN

ALAMEDA COUNTY JURY POOLS

A Report by the ACLU of Northern California

October 2010

https://www.aclunc.org/sites/default/files/racial_and_ethnic_disparitie s_in_alameda_county_jury_pools.pdf

Jury Panels

Section 197 of California's Code of Civil Procedure says, "All persons selected for jury service shall be selected at random, from a source or sources inclusive of a representative cross section of the population of the area served by the court."

Model and Alternative

Model:

- The people on the jury panels were selected at random from the eligible population
- Alternative viewpoint:
 - No, they weren't chosen at random
- What are we comparing here?

A New Statistic

- People on the panels are of multiple ethnicities
- Distribution of ethnicities is:
 - categorical or numerical?
- To see whether the distribution of ethnicities of the panels is close to that of the eligible jurors, we have to measure the distance between two categorical distributions

Every distance has a computational recipe

Total Variation Distance (TVD):

- For each category, compute the difference in proportions between two distributions
- Take the absolute value of each difference
- Sum, and then divide the sum by 2

To assess whether a sample was drawn randomly from a known categorical distribution:

- Use Total Variation Distance as the statistic:
 - TVD measures the distance between categorical distributions
- Sample at random from the population and compute the TVD from the random sample; repeat numerous times
- Compare:
 - Empirical distribution of simulated TVDs with
 - Actual TVD from the sample in the study

Decisions and Uncertainty

Mullen Mark

- We are trying to choose between two views of the world, based on data in a sample.
- It is not always clear whether the data are consistent with one view or the other.
- Random samples can turn out quite extreme. It is unlikely, but possible

Terminology

The method only works if we can simulate data under one of the hypotheses.

Null hypothesis

- A well defined chance model about how the data were generated
- We can simulate data under the assumptions of this model
 - "Under the null hypothesis"

Alternative hypothesis:

• A different view about the origin of the data

 The statistic that we choose to simulate, to decide between the two hypotheses

Questions before choosing the statistic:

- What values of the statistic will make us lean towards the null hypothesis?
- What values will make us lean towards the alternative?
 - Preferably, the answer should be just a "high" or just a "low" value
 - Try to avoid "both high and low"

Prediction Under the Null Hypothesis

- Simulate the test statistic under the null hypothesis
 - Draw the histogram of simulated values
 - The empirical distribution of the statistic under the null hypothesis
- It is a prediction about the statistic, made by the null hypothesis
 - It shows all the likely values of the statistic
 - Also how likely they are (if the null hypothesis is true)
- The probabilities are approximate, because we can't generate all the possible random samples

Resolve choice between null and alternative hypotheses

- Compare the observed test statistic and its empirical distribution under the null hypothesis
- If the observed value is not consistent with the empirical distribution
 - The test favors the alternative
 - "data is more consistent with the alternative"
- Whether a value is consistent with a distribution:
- A visualization may be sufficient
- If not, there are conventions about "consistency"

Statistical Significance

automan.

Tail Areas

Tail Areas

Not so clear example

 "Inconsistent with the null": The test statistic is in the tail of the empirical distribution under the null hypothesis

Not so clear example

- "Inconsistent with the null": The test statistic is in the tail of the empirical distribution under the null hypothesis
- "In the tail," first convention:
 - The area in the tail is less than 5%
 - The result is "statistically significant"
- "In the tail," second convention:
 - The area in the tail is less than 1%
 - The result is "highly statistically significant"

Formal name: observed significance level

The *P*-value is the chance,

- Under the null hypothesis,
- That the test statistic
- Is equal to the value that was observed in the data
- Or is even further in the direction of the tail

Scenario: After the midterm, students in a MW lab (of 27 students) noticed that their scores were on average lower than the rest of the class.

Question:

Why did the section do worse than others?

Potential Answers:

Null Hypothesis: The average score of the students in the lab is like the average score of the same number of students picked at random from the class

Alternative Hypothesis: No, the average is too low

Scenario: After the midterm, students in a MW lab noticed that their scores were on average lower than the rest of the class.

Question:

Did the 27 students do lower by chance?

Potential Answers:

Null Hypothesis: The average score of the students in the lab is like the average score of the same number of students picked at random from the class

Alternative Hypothesis: No, the average is too low

Statistic to measure:

The average score per section (27 students)

- Choose a statistic to measure the "discrepancy" between model and data
 - Average score per 27 students
- Simulate the statistic under the model's assumptions
 - np.average(scores_only.sample(27, with_replacement=False))
- Compare the data to the model's predictions:
 - Draw a histogram of simulated values of the statistic
 - Compute the observed statistic from the real sample

Is the observed statistic consistent with the histogram?

The *P*-value is the chance,

• Under the null hypothesis, that the test statistic, is equal to the value that was observed in the data, or is even further in the direction of the tail

Probability (A) = $\frac{number \ of \ outcomes \ that \ make \ A \ happen}{total \ number \ of \ outcomes}$

A = the sampled statistic was less than or equal to the observed statistic

P(A) = (the number of times the sampled statistic was less than the observed statistic) divided by the number of samples

$P(A) = \\ \underline{sum(sample \ averages} \le observed \ averages)}$

Compute the p-value

Compute the p-value

Comparing Two Samples

munn

- Compare values of sampled *individuals* in Group A with values of sampled *individuals* in Group B.
- Question: Do the two sets of values come from the same underlying distribution?
- Answering this question by performing a statistical test is called A/B testing.

The Groups and the Questions

- Random sample of mothers of newborns.
 Compare:
 - A. Birth weights of babies of mothers who smoked during pregnancy
 - B. Birth weights of babies of mothers who didn't smoke
- Question: Could the difference be due to chance alone?

Hypotheses

Null Hypothesis:

 In the population, the distributions of the birth weights of the babies in the two groups are the same. (They are different in the sample just due to chance.)

Alternative Hypothesis:

 In the population, the babies of the mothers who smoked weigh less, on average, than the babies of the non-smokers

Group A: non-smokers Group B: smokers

Statistic:

- Difference between average weights:
 - Group B average Group A average

Negative values of this statistic favor the alternative

If the null is true, all rearrangements of labels are equally likely

Permutation Test:

- Shuffle all birth weights
- Assign some to Group A and the rest to Group B
 - Key: keep the sizes of Group A and Group B that same from before
- Find the difference between the two shuffled groups
- Repeat

Random Permutations

tbl.sample(n)

Table of n rows picked randomly with replacement

tbl.sample()

- Table with same number of rows as original tbl,
- picked randomly with replacement
- tbl.sample(n, with_replacement = False)
 - Table of n rows picked randomly without replacement
- tbl.sample(with_replacement = False)
 - All rows of tbl, in random order

COESCERSES

Really and a state of the second

111

Hypothesis Testing Review

- **1 Sample: One Category** (e.g. percent of black male jurors)
- Test Statistic: empirical_percent, abs(empirical_percent null_percent)
- How to Simulate: sample_proportions(n, null_dist)
- **1 Sample: Multiple Categories** (e.g. ethnicity distribution of jury panel)
- Test Statistic: tvd(empirical_dist, null_dist)
- How to Simulate: sample_proportions(n, null_dist)
- **1 Sample: Numerical Data** (e.g. scores in a lab section)
- Test Statistic: empirical_mean, abs(empirical_mean null_mean)
- How to Simulate: population_data.sample(n, with_replacement=False)
- 2 Samples: Numerical Data (e.g. birth weights of smokers vs. non-smokers)
- Test Statistic: group_a_mean group_b_mean,
 - group_b_mean group_a_mean, abs(group_a_mean group_b_mean)
- How to Simulate: empirical_data.sample(with_replacement=False)