BC COMS 1016: Intro to Comp Thinking & Data Science

Lecture 15 – Causality & Estimation Variability

- HW06 <u>Testing Hypotheses</u>
 - Due Thursday 03/31
- Project 2
 - Released tonight
 - Released due Friday 04/15
- Lab07 Normal Distribution and Variance of Sample Means
 - Due Monday 04/04

Review: Assessing Models

allana

- A model is a set of assumptions about the data
- In data science, many models involve assumptions about processes that involve randomness:
 - "Chance models"
- **Key question:** does the model fit the data?

The method only works if we can simulate data under one of the hypotheses.

Null hypothesis

- A well defined chance model about how the data were generated
- We can simulate data under the assumptions of this model
 - "Under the null hypothesis"
- Alternative hypothesis:
 - A different view about the origin of the data

- If we can simulate data according to the assumptions of the model, we can learn what the model predicts
- We can compare the model's predictions (simulations) to the observed data
 - Here, "observed data" == what actually happened
- If the data and the model's predictions are not consistent, that is evidence against the model

- Choose a statistic to measure the "discrepancy" between model and data
- Simulate the statistic under the model's assumptions
- Compare the data to the model's predictions:
 - Draw a histogram of simulated values of the statistic
 - Compute the observed statistic from the real sample
- If the observed statistic is far from the histogram, that is evidence against the model

DESCORTES OF LESS

U.

TP

Hypothesis Testing Review

- **1 Sample: One Category** (e.g. percent of black male jurors)
- Test Statistic: empirical_percent, abs(empirical_percent null_percent)
- How to Simulate: sample_proportions(n, null_dist)
- **1 Sample: Multiple Categories** (e.g. ethnicity distribution of jury panel)
- Test Statistic: tvd(empirical_dist, null_dist)
- How to Simulate: sample_proportions(n, null_dist)
- **1 Sample: Numerical Data** (e.g. scores in a lab section)
- Test Statistic: empirical_mean, abs(empirical_mean null_mean)
- How to Simulate: population_data.sample(n, with_replacement=False)
- 2 Samples: Numerical Data (e.g. birth weights of smokers vs. non-smokers)
- Test Statistic: group_a_mean group_b_mean,
 - group_b_mean group_a_mean, abs(group_a_mean group_b_mean)
- How to Simulate: empirical_data.sample(with_replacement=False)

Cause a contraction of the contr

Muller Marker

Randomized Controlled Experiment

- Sample A: control group
- Sample B: treatment group
- if the treatment and control groups are selected at random, then you can make causal conclusions.
- Any difference in outcomes between the two groups could be due to
 - chance
 - the treatment

Randomized Assignment & Shuffling

Personal de la constant de la consta

The Xth percentile is first value on the sorted list that is at least as large as X% of the elements

Example:

The 80th percentile is ordered element 4: (80/100) * 5

For a percentile that does not exactly correspond to an element, take the next greater element instead

- The *p*th percentile is the smallest value in a set that is at least as large as *p*% of the elements in the set
- Function in the datascience module: percentile(p, values)
- p is between 0 and 100
- Returns the *p*th percentile of the array

Which are True, when s = [1, 7, 3, 9, 5]?

1. percentile(10, s) ==
$$0$$

- 2. percentile(39, s) == percentile(40, s)
- 3. percentile(40, s) == percentile(41, s)
- 4. percentile(50, s) == 5

Estination of the second secon

un un un

- How do we calculate the value of an unknown parameter?
- If you have a census (that is, the whole population):
 - Just calculate the parameter and you're done
- If you don't have a census:
 - Take a random sample from the population
 - Use a statistic as an **estimate** of the parameter

Estimation Variability

- One sample → One estimate
- But the random sample could have come out differently
- And so the estimate could have been different
- Big question:
 - How different would it be if we estimated again?

- The estimate is usually not exactly right.
- Variability of the estimate tells us something about how accurate the estimate is:

Estimate = Parameter + Error

- How accurate is the estimate, usually?
- How big is a typical error?
- When we have a census, we can do this by simulation

- We want to understand errors of our estimate
- Given the **population**, we could simulate
 - ...but we only have the sample!
- To get many values of the estimate, we needed many random samples
- Can't go back and sample again from the population:
 - No time, no money
- Stuck?

in the second Bootstrap

alle

Hull Markeller

The Bootstrap

- A technique for simulating repeated random sampling
- All that we have is the original sample
 - ... which is large and random
 - Therefore, it probably resembles the population
- So we sample at random from the original sample!

How the Bootstrap works

Why the Bootstrap works

Ł

2

Real World vs Bootstrap World

Real World

- True probability distribution (population)
 - Random sample 1
 - Estimate 1
 - Random sample 2
 - Estimate 2
 - ...
 - Random sample 1000
 - Estimate 1000

Bootstrap World

- Empirical distribution of original sample ("population")
 - Bootstrap sample 1
 - Estimate 1
 - Bootstrap sample 2
 - Estimate 2
 - ...
 - Bootstrap sample 1000
 - Estimate 1000

Hope: these two scenarios are analogous

The Bootstrap Principle

• The bootstrap principle:

- Bootstrap-world sampling ≈ Real-world sampling
- Not always true!
 - ... but reasonable if sample is large enough
- We hope that:
 - a) Variability of bootstrap estimate
 - b) Distribution of bootstrap errors
 - ... are similar to what they are in the real world

Key to Resampling

- From the original sample,
 - draw at random
 - with replacement
 - as many values as the original sample contained
- The size of the new sample has to be the same as the original one, so that the two estimates are comparable

Confidence Intervals

- Interval of estimates of a parameter
- Based on random sampling
- 95% is called the confidence level
 - Could be any percent between 0 and 100
 - Higher level means wider intervals
- The confidence is in the process that gives the interval:
 - It generates a "good" interval about 95% of the time

Use Hethods Appropriately

Mulleun.

By our calculation, an approximate 95% confidence interval for the average age of the mothers in the population is (26.9, 27.6) years.

True or False:

• About 95% of the mothers in the population were between 26.9 years and 27.6 years old.

Answer:

• False. We're estimating that their average age is in this interval.

An approximate 95% confidence interval for the average age of the mothers in the population is (26.9, 27.6) years.

True or False:

There is a 0.95 probability that the average age of mothers in the population is in the range 26.9 to 27.6 years.

Answer:

False. The average age of the mothers in the population is unknown but it's a constant. It's not random. No chances involved

- if you're trying to estimate very high or very low percentiles, or min and max
- If you're trying to estimate any parameter that's greatly affected by rare elements of the population
- If the probability distribution of your statistic is not roughly bell shaped (the shape of the empirical distribution will be a clue)
- If the original sample is very small

- Null hypothesis: Population average = x
- Alternative hypothesis: Population average =/x
- Cutoff for P-value: p%
- Method:
 - Construct a (100-*p*)% confidence interval for the population average
 - If x is not in the interval, reject the null
 - If x is in the interval, can't reject the null