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Lecture 15 –
Causality & 

Estimation Variability



Announcements - update

§ HW06 - Testing Hypotheses
• Due Thursday 03/31

§ Project 2
• Released tonight
• Released due Friday 04/15

§ Lab07 – Normal Distribution and Variance of 
Sample Means
• Due Monday 04/04
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http://jupyterhub.coms1016.barnard.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2FBC-COMS-1016%2Fmaterials-f20&urlpath=tree%2Fmaterials-f20%2Fhomeworks%2Fhw06%2Fhw06.ipynb&branch=master


Review: 
Assessing Models
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Models

§ A model is a set of assumptions about the data

§ In data science, many models involve 
assumptions about processes that involve 
randomness:
• “Chance models”

§ Key question: does the model fit the data?
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Null and Alternative

The method only works if we can simulate data 
under one of the hypotheses.
§ Null hypothesis

• A well defined chance model about how the data were 
generated

• We can simulate data under the assumptions of this 
model

• “Under the null hypothesis”

§ Alternative hypothesis:
• A different view about the origin of the data
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Approach to Assessing Models

§ If we can simulate data according to the 
assumptions of the model, we can learn what 
the model predicts

§ We can compare the model’s predictions 
(simulations) to the observed data
• Here, “observed data” == what actually happened

§ If the data and the model’s predictions are not 
consistent, that is evidence against the model
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Steps in Assessing a Model

§ Choose a statistic to measure the “discrepancy” 
between model and data

§ Simulate the statistic under the model’s 
assumptions

§ Compare the data to the model’s predictions:
• Draw a histogram of simulated values of the statistic
• Compute the observed statistic from the real sample 

§ If the observed statistic is far from the histogram, 
that is evidence against the model 
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Types of Tests
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Hypothesis Testing Review

1 Sample: One Category (e.g. percent of black male jurors)
§ Test Statistic: empirical_percent, abs(empirical_percent - null_percent) 
§ How to Simulate: sample_proportions(n, null_dist) 

1 Sample: Multiple Categories (e.g. ethnicity distribution of jury panel) 
§ Test Statistic: tvd(empirical_dist, null_dist)
§ How to Simulate: sample_proportions(n, null_dist) 

1 Sample: Numerical Data (e.g. scores in a lab section)
§ Test Statistic: empirical_mean, abs(empirical_mean - null_mean)
§ How to Simulate: population_data.sample(n, with_replacement=False) 

2 Samples: Numerical Data (e.g. birth weights of smokers vs. non-smokers) 
§ Test Statistic: group_a_mean - group_b_mean, 

• group_b_mean - group_a_mean, abs(group_a_mean - group_b_mean) 
§ How to Simulate: empirical_data.sample(with_replacement=False) 
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Causality
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Randomized Controlled Experiment

§ Sample A: control group 
§ Sample B: treatment group 

§ if the treatment and control groups are selected 
at random, then you can make causal 
conclusions. 

§ Any difference in outcomes between the two groups 
could be due to 
• chance
• the treatment 
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Randomized Assignment & Shuffling
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Percentiles
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Computing Percentiles

The Xth percentile is first value on the sorted list that is at 
least as large as X% of the elements 

Example: 
s = [1, 7, 3, 9, 5] 
s_sorted = [1, 3, 5, 7, 9] 
percentile(80, s) = ?

The 80th percentile is ordered element 4: (80/100) * 5

For a percentile that does not exactly correspond to an 
element, take the next greater element instead 
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The percentile Function

§ The pth percentile is the smallest value in a set 
that is at least as large as p% of the elements 
in the set 

§ Function in the datascience module: 
percentile(p, values)

§ p is between 0 and 100

§ Returns the pth percentile of the array 
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Discussion Question?

Which are True, when s = [1, 7, 3, 9, 5]? 

1. percentile(10, s) == 0

2. percentile(39, s) == percentile(40, s)

3. percentile(40, s) == percentile(41, s) 

4. percentile(50, s) == 5 
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Estimation
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Inference: Estimation

§ How do we calculate the value of an unknown 
parameter? 

§ If you have a census (that is, the whole 
population): 
• Just calculate the parameter and you’re done 

§ If you don’t have a census: 
• Take a random sample from the population 
• Use a statistic as an estimate of the parameter 
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Estimation Variability
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Variability of the Estimate

§ One sample ➜ One estimate 

§ But the random sample could have come out 
differently 

§ And so the estimate could have been different 

§ Big question: 
• How different would it be if we estimated again? 
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Quantifying Uncertainty

§ The estimate is usually not exactly right.
§ Variability of the estimate tells us something 

about how accurate the estimate is:
Estimate = Parameter + Error 

§ How accurate is the estimate, usually? 
§ How big is a typical error? 
§ When we have a census, we can do this by 

simulation 
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Where to Get Another Sample?

§ We want to understand errors of our estimate 
§ Given the population, we could simulate 

• ...but we only have the sample! 
§ To get many values of the estimate, we needed 

many random samples 
§ Can’t go back and sample again from the 

population: 
• No time, no money 

§ Stuck? 
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The Bootstrap
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The Bootstrap

§ A technique for simulating repeated random 
sampling 

§ All that we have is the original sample
• ... which is large and random
• Therefore, it probably resembles the population 

§ So we sample at random from the original 
sample! 
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How the Bootstrap works
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Population Sample

Resamples



Why the Bootstrap works
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Population Sample

Resamples

What we wish we 
could get 

What we actually 
can get



Real World vs Bootstrap World

Real World
§ True probability distribution 

(population)

• Random sample 1
• Estimate 1

• Random sample 2
• Estimate 2

• …
• Random sample 1000

• Estimate 1000

Bootstrap World
§ Empirical distribution of 

original sample 
(“population”)
• Bootstrap sample 1

• Estimate 1
• Bootstrap sample 2

• Estimate 2
• …
• Bootstrap sample 1000

• Estimate 1000
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Hope: these two scenarios are analogous 



The Bootstrap Principle

§ The bootstrap principle:
• Bootstrap-world sampling ≈ Real-world sampling 

§ Not always true!
• ... but reasonable if sample is large enough 

§ We hope that: 
a) Variability of bootstrap estimate 
b) Distribution of bootstrap errors 
...are similar to what they are in the real world 
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Key to Resampling

§ From the original sample, 
• draw at random 
• with replacement 
• as many values as the original sample contained 

§ The size of the new sample has to be the same 
as the original one, so that the two estimates are 
comparable 
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Confidence Intervals
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95% Confidence Interval

§ Interval of estimates of a parameter 
§ Based on random sampling 
§ 95% is called the confidence level 

• Could be any percent between 0 and 100 
• Higher level means wider intervals 

§ The confidence is in the process that gives 
the interval: 
• It generates a “good” interval about 95% of the time 
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Use Methods 
Appropriately 
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Can You Use a CI Like This? 

By our calculation, an approximate 95% confidence 
interval for the average age of the mothers in the 
population is (26.9, 27.6) years. 

True or False:
• About 95% of the mothers in the population were between 

26.9 years and 27.6 years old. 

Answer: 
• False. We’re estimating that their average age is in this 

interval. 
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Is This What a CI Means? 

An approximate 95% confidence interval for the average 
age of the mothers in the population is (26.9, 27.6) years. 

True or False:
There is a 0.95 probability that the average age of 

mothers in the population is in the range 26.9 to 27.6 years. 

Answer:
False. The average age of the mothers in the 

population is unknown but it’s a constant. It’s not random. 
No chances involved 
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When NOT to use the Bootstrap

§ if you’re trying to estimate very high or very low 
percentiles, or min and max 

§ If you’re trying to estimate any parameter that’s 
greatly affected by rare elements of the 
population 

§ If the probability distribution of your statistic is 
not roughly bell shaped (the shape of the 
empirical distribution will be a clue) 

§ If the original sample is very small 
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Using a CI for Testing

§ Null hypothesis: Population average = x 
§ Alternative hypothesis: Population average ≠ x 
§ Cutoff for P-value: p% 
§ Method: 

• Construct a (100-p)% confidence interval for the 
population average 

• If x is not in the interval, reject the null 
• If x is in the interval, can’t reject the null 
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