BC COMS 1016: Intro to Comp Thinking \& Data Science

Lecture 19 -
Confidence Interval Standard Deviation Normal Distributions

Announcements

- Checkpoint/Project 2 (midterm):
- due Monday 04/18
- No Lab this week
- Homework 7 - Confidence Intervals, Resampling, the Bootstrap, and the Central Limit Theorem
- Due Thursday 04/07
- Dropping 1 homeworks and 1 lab
- Speak up!!
- More posts on ed-stem - great job!

On naming histograms

- When running simulations, use label names to make it clear these are under simulation

On naming histograms

- When running simulations, use label names to make is clear these are under simulation

On naming histograms

- When running simulations, use label names to make is clear these are under simulation

Data Science in this course

- Exploration
- Discover patterns in data
- Articulate insights (visualizations)
- Inference
- Make reliable conclusions about the world
- Statistics is useful
- Prediction
- Informed guesses about unseen data

Estimation Variability

The Bootstrap

- A technique for simulating repeated random sampling
- All that we have is the original sample
- ... which is large and random
- Therefore, it probably resembles the population
- So we sample at random from the original sample!

Why the Bootstrap works

Population

What we wish we could get

Resamples

What we actually can get

Real World vs Bootstrap World

Real World

- True probability distribution (population)
- Random sample 1
- Estimate 1
- Random sample 2
- Estimate 2
- Random sample 1000
- Estimate 1000

Bootstrap World

- Empirical distribution of original sample ("population")
- Bootstrap sample 1
- Estimate 1
- Bootstrap sample 2
- Estimate 2
- Bootstrap sample 1000
- Estimate 1000

Hope: these two scenarios are analogous

The Bootstrap Principle

- The bootstrap principle:
- Bootstrap-world sampling \approx Real-world sampling
- Not always true!
- ... but reasonable if sample is large enough
- We hope that:
a) Variability of bootstrap estimate
b) Distribution of bootstrap errors
...are similar to what they are in the real world

Key to Resampling

- From the original sample,
- draw at random
- with replacement
- as many values as the original sample contained
- The size of the new sample has to be the same as the original one, so that the two estimates are comparable

Confidence Intervals

95\% Confidence Interval

- Interval of estimates of a parameter
- Based on random sampling
- 95% is called the confidence level
- Could be any percent between 0 and 100
- Higher level means wider intervals
- The confidence is in the process that gives the interval:
- It generates a "good" interval about 95% of the time

When to find a Confidence Interval

- You have to guess a parameter for a population
- You have a random sample from the population
- But not access to the population
- You want to quantify uncertainty
- A statistic is a reasonable estimate of the parameter

When NOT to use the Bootstrap

- if you're trying to estimate very high or very low percentiles, or min and max
- If you're trying to estimate any parameter that's greatly affected by rare elements of the population
- If the probability distribution of your statistic is not roughly bell shaped
- (the shape of the empirical distribution will be a clue)
- If the original sample is very small

Can You Use a CI Like This?

By our calculation, an approximate 95\% confidence interval for the average age of the mothers in the population is $(26.9,27.6)$ years.

True or False:

- About 95\% of the mothers in the population were between 26.9 years and 27.6 years old.

Answer:

- False. We're estimating that their average age is in this interval.

Is This What a CI Means?

An approximate 95\% confidence interval for the average age of the mothers in the population is $(26.9,27.6)$ years.

True or False:

There is a 0.95 probability that the average age of mothers in the population is in the range 26.9 to 27.6 years.

Answer:
False. The average age of the mothers in the population is unknown but it's a constant. It's not random. No chances involved

Using a CI for Testing

- Null hypothesis: Population average $=x$
- Alternative hypothesis: Population average =/x
- Cutoff for P-value: $p \%$
- Method:
- Construct a (100-p)\% confidence interval for the population average
- If x is not in the interval, reject the null
- If x is in the interval, can't reject the null

Data Science in this course

- Exploration
- Discover patterns in data
- Articulate insights (visualizations)
- Inference
- Make reliable conclusions about the world
- Statistics is useful
- Prediction
- Informed guesses about unseen data

Center \& Spread

Questions/Goals

- How can we quantify natural concepts like "center" and "variability"?
- Why do many of the empirical distributions that we generate come out bell shaped?
- How is sample size related to the accuracy of an estimate?

Average and the Histogram

The average (mean)

Data: 2, 3, 3, 9

$$
\text { Average }=(2+3+3+9) / 4=4.25
$$

- Need not be a value in the collection
- Need not be an integer even if the data are integers
- Somewhere between min and max, but not necessarily halfway in between
- Same units as the data
- Smoothing operator: collect all the contributions in one big pot, then split evenly

Relation to the histogram

- The average depends only on the proportions in which the distinct values appears
- The average is the center of gravity of the histogram
- It is the point on the horizontal axis where the histogram balances

Average as balance point

- Average is 4.25

Question

- What list produces this histogram?

Question 2

- Are the medians of these two distributions the same or different?
- Are the means the same or different?
- If you say "different," then say which one is bigger

Answer 2

- List 1
- $1,2,2,3,3,3,4,4,5$
- List 2
- 1, 2, 2, 3, 3, 3, 4, 4, 10
- Medians = 3
- Mean(List1) $=3$
- Mean (List 2) = 3.55556

Comparing Mean and Median

- Mean: Balance point of the histogram
- Median: Half-way point of data; half the area of histogram is on either side of median
- If the distribution is symmetric about a value, then that value is both the average and the median.
- If the histogram is skewed, then the mean is pulled away from the median in the direction of the tail.

Question

- Which is bigger, median or mean?

Standard Deviation

Defining Variability

- Plan A: "biggest value - smallest value"
- Doesn't tell us much about the shape of the distribution
- Plan B:
- Measure variability around the mean
- Need to figure out a way to quantify this

How far from the average?

- Standard deviation (SD) measures roughly how far the data are from their average
- SD = root mean square of deviations from average Steps: 544
- SD has the same units as the data

Why use Standard Deviation

- There are two main reasons.
- The first reason:
- No matter what the shape of the distribution, the bulk of the data are in the range "average plus or minus a few SDs"
- The second reason:
- Relation with the bellshaped curve
- Discuss this later

Chebyshev's Inequality

How big are most values?

No matter what the shape of the distribution, the bulk of the data are in the range "average \pm a few SDs"

Chebyshev's Inequality

No matter what the shape of the distribution, the proportion of values in the range "average $\pm z$ SDs" is

$$
\text { at least } 1-1 / z 2
$$

Chebyshev's Bounds

Range
Proportion

Chebyshev's Bounds

Range	Proportion
average ± 2 SDs	at least $1-1 / 4(75 \%)$

Chebyshev's Bounds

Range	Proportion
average ± 2 SDs	at least $1-1 / 4(75 \%)$
average ± 3 SDs	at least $1-1 / 9(88.888 \ldots \%)$

Chebyshev's Bounds

Range	Proportion
average ± 2 SDs	at least $1-1 / 4(75 \%)$
average ± 3 SDs	at least $1-1 / 9(88.888 \ldots \%)$
average ± 4 SDs	at least $1-1 / 16(93.75 \%)$

Chebyshev's Bounds

Range	Proportion
average ± 2 SDs	at least $1-1 / 4(75 \%)$
average ± 3 SDs	at least $1-1 / 9(88.888 \ldots \%)$
average ± 4 SDs	at least $1-1 / 16(93.75 \%)$
average ± 5 SDs	at least $1-1 / 25(96 \%)$

True no matter what the distribution looks like

Understanding HW05 Results

Statistics:
Minimum: 7.5
Maximum: 29.0
Mean: 24.55
Median: 25.0
Standard Deviation: 3.96

- At least 50\% of the class had scores between 20.59 and 28.51
- At least 75\% of the class had scores between 16.62 and 32.47

Standard Units

- How many SDs above average?
- z = (value - average)/SD
- Negative z: value below average
- Positive z: value above average
- $z=0$: value equal to average
- When values are in standard units: average $=0$, SD $=1$
- Chebyshev: At least 96\% of the values of z are between -5 and 5

Age in Years Age in Standard Units

What whole numbers are	27	-0.0392546
closest to	33	0.992496
(1) Average age	28	0.132704
(2) The SD of ages	23	-0.727088
	25	-0.383171
	33	0.992496
	23	-0.727088
	25	-0.383171
	30	0.476621

Age in Years Age in Standard Units
(1) Average age is close to 27 (standard unit here is close to 0)

27	-0.0392546
33	0.992496
28	0.132704
23	-0.727088
25	-0.383171
33	0.992496
23	-0.727088
25	-0.383171
30	0.476621
27	-0.0392546

The SD and the Histogram

- Usually, it's not easy to estimate the SD by looking at a histogram.
- But if the histogram has a bell shape, then you can

The SD and Bell Shaped Curves

If a histogram is bell-shaped, then

- the average is at the center
- the SD is the distance between the average and the points of inflection on either side

Points of Inflection

Normal Distribution

Standard Normal Curve

Equation for the normal curve

$$
\phi(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}}, \quad-\infty<z<\infty
$$

Bell Curve

No matter what the shape of the distribution,

 the bulk of the data are in the range "average \pm a few SDs"If a histogram is bell-shaped, then

- Almost all of the data are in the range "average ± 3 SDs

Bounds and Approximations

Percent in Range

Average +- 1 SD +- 2 SDs

Average +- 3 SDs

Average At least 75\% About 95\%

All

Distributions
At least 0\% About 68\%

At least
88.888...\%

Normal Distributions

A "Central" Area

Average ± 2 SDs: 95% of the area
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

Standard Units

Central Limit Theorem

Central Limit Theorem

If the sample is

- large, and
- drawn at random with replacement,

Then, regardless of the distribution of the population,
the probability distribution of the sample sum (or the sample average) is roughly normal

Sample Average

- We often only have a sample
- We care about sample averages because they estimate population averages.
- The Central Limit Theorem describes how the normal distribution (a bell-shaped curve) is connected to random sample averages.
- CLT allows us to make inferences based on averages of random samples

Correlation

