BC COMS 1016: Intro to Comp Thinking & Data Science

Lecture 20 – Standard Deviation Normal Distributions Correlation

Announcements

- Project 2:
 - due Monday 04/18
- No Lab this week
- Homework 7 Confidence Intervals, Resampling, the Bootstrap, and the Central Limit Theorem
 - Due Thursday 04/07
- Dropping 1 homeworks and 1 lab
- Speak up!!
 - More posts on ed-stem great job!

Data Science in this course

Exploration

- Discover patterns in data
- Articulate insights (visualizations)

Inference

- Make reliable conclusions about the world
- Statistics is useful

Prediction

• Informed guesses about unseen data

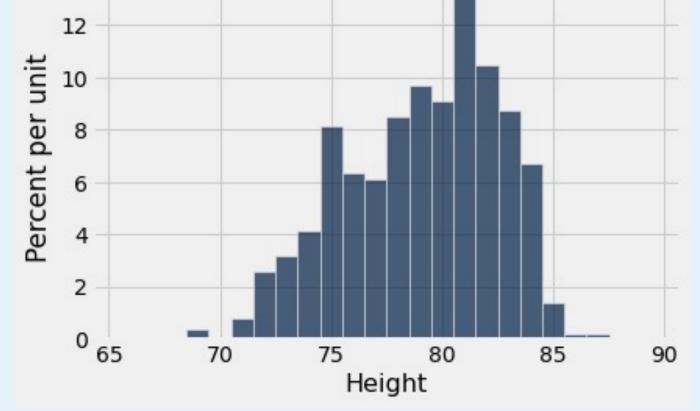
Center & Spread

- How can we quantify natural concepts like "center" and "variability"?
- Why do many of the empirical distributions that we generate come out bell shaped?
- How is sample size related to the accuracy of an estimate?

Average and Neglian

and the area

10



• Which is bigger, median or mean?

Comparing Mean and Median

- Mean: Balance point of the histogram
- Median: Half-way point of data; half the area of histogram is on either side of median
- If the distribution is symmetric about a value, then that value is both the average and the median.
- If the histogram is skewed, then the mean is pulled away from the median in the direction of the tail.

Standard Deviation

Defining Variability

- Plan A: "biggest value smallest value"
 - Doesn't tell us much about the shape of the distribution
 - In other words, doesn't tell us where most values are

Plan B:

- Measure variability around the mean
- Need to figure out a way to quantify this

- Standard deviation (SD) measures roughly how far the data are from their average
- SD = root mean square of deviations from average
 Steps: 5 4 3 2 1
- SD has the same units as the data

Why use Standard Deviation

• There are two main reasons.

• The first reason:

 No matter what the shape of the distribution, the bulk of the data are in the range "average plus or minus a few SDs"

The second reason:

- Relation with the bellshaped curve
- Discuss this later

Q: How big are most values? A: Chebyshev's Inequality

No matter what the shape of the distribution, the bulk of the data are in the range "average ± a few SDs"

Chebyshev's Inequality

No matter what the shape of the distribution, the proportion of values in the range "average $\pm z$ SDs" is

at least 1 - 1/z2

Chebyshev's Bounds

Range

Proportion

Range	Proportion
average ± 2 SDs	at least 1 - 1/4 (75%)

Range	Proportion
average ± 2 SDs	at least 1 - 1/4 (75%)
average ± 3 SDs	at least 1 - 1/9 (88.888%)

Range	Proportion
average ± 2 SDs	at least 1 - 1/4 (75%)
average ± 3 SDs	at least 1 - 1/9 (88.888%)
average ± 4 SDs	at least 1 - 1/16 (93.75%)

Range	Proportion
average ± 2 SDs	at least 1 - 1/4 (75%)
average ± 3 SDs	at least 1 - 1/9 (88.888%)
average ± 4 SDs	at least 1 - 1/16 (93.75%)
average ± 5 SDs	at least 1 - 1/25 (96%)

True no matter what the distribution looks like

Understanding HW05 Results

Statistics: Minimum: 7.5 Maximum: 29.0 Mean: 24.55 Median: 25.0 Standard Deviation: 3.96

- At least 50% of the class had scores between 20.59 and 28.51
- At least 75% of the class had scores between 16.62 and 32.47

Standarde University of the second se

Mulling

Standard Units

- How many SDs above average?
- z = (value average)/SD
 - Negative z: value below average
 - Positive z: value above average
 - z = 0: value equal to average
- When values are in standard units: average = 0, SD = 1
- Chebyshev: At least 96% of the values of z are between -5 and 5

Question

	Age in Years	Age in Standard Units
What whole numbers are closest to	27	-0.0392546
	33	0.992496
	28	0.132704
(1) Average age	23	-0.727088
	25	-0.383171
(2) The SD of ages	33	0.992496
	23	-0.727088
	25	-0.383171
	30	0.476621
	27	-0.0392546

Answers

Age in Years	Age in Standard Units
27	-0.0392546
33	0.992496
28	0.132704
23	-0.727088
25	-0.383171
33	0.992496
23	-0.727088
25	-0.383171
30	0.476621
27	-0.0392546

(1) Average age is close to 27 (standard unit here is close to 0)

(2) The SD is about 6 years (standard unit at 33 is close to
1. 33 - 27 = 6)

- Usually, it's not easy to estimate the SD by looking at a histogram.
- But if the histogram has a bell shape, then you can

If a histogram is bell-shaped, then

- the average is at the center
- the SD is the distance between the average and the points of inflection on either side

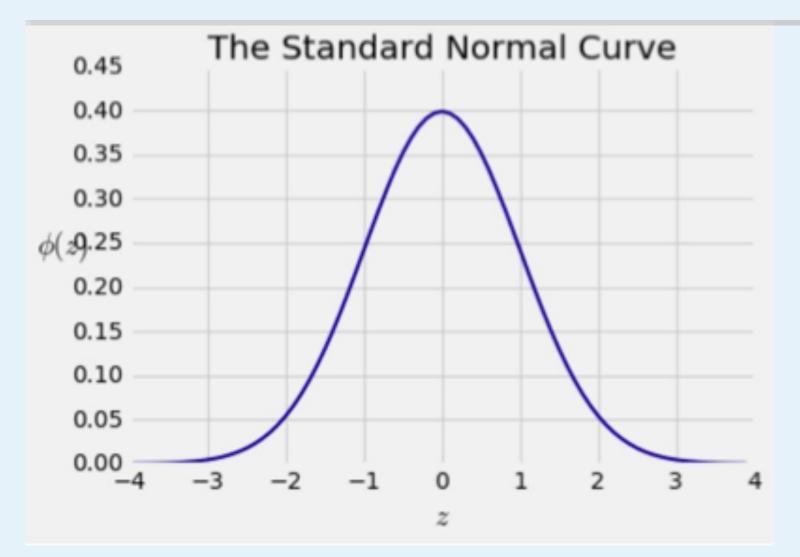
Points of Inflection

Normal Distribution

Equation for the normal curve

 z^2 $-\infty < z < \infty$ 2

Bell Curve



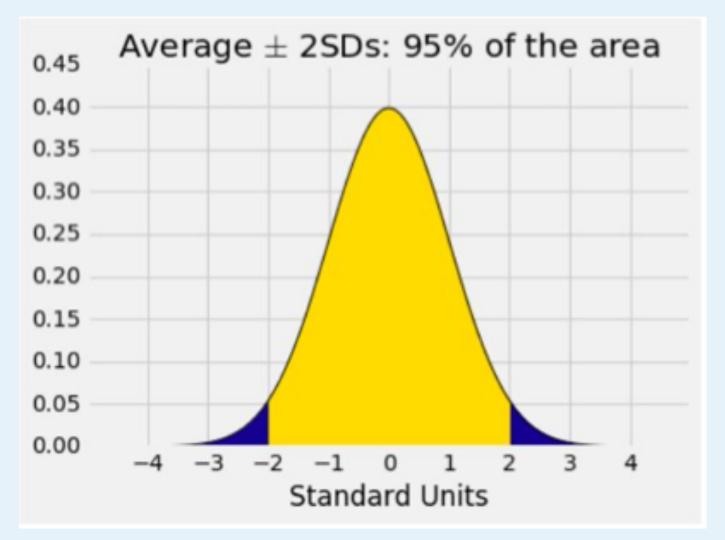
No matter what the shape of the distribution,

the bulk of the data are in the range "average ± a few SDs"

If a histogram is bell-shaped, then

 Almost all of the data are in the range "average ± 3 SDs

Percent in Range	All Distributions	Normal Distributions
Average +- 1 SD	At least 0%	About 68%
Average +- 2 SDs	At least 75%	About 95%
Average +- 3 SDs	At least 88.888%	About 99.73%



Central Limit Theorem

If the sample is

- Iarge, and
- drawn at random with replacement,

Then, regardless of the distribution of the population,

the probability distribution of the sample sum (or the sample average) is roughly normal

Sample Average

- We often only have a sample
- We care about sample averages because they estimate population averages.
- The Central Limit Theorem describes how the normal distribution (a bell-shaped curve) is connected to random sample averages.
- CLT allows us to make inferences based on averages of random samples

Correlation

Copyright © 2016 Barnard College

- To predict the value of a variable:
 - Identify (measurable) attributes that are associated with that variable
 - Describe the relation between the attributes and the variable you want to predict
 - Then, use the relation to predict the value of a variable

Visualizing Two Numerical Variables

Trend

- Positive association
- Negative association

Pattern

- Any discernible "shape" in the scatter
- Linear
- Non-linear

Visualize, then quantify

The Correlation Coefficient r

- Measures linear association
- Based on standard units
- -1 ≤ r ≤ 1
 - *r* = 1: scatter is perfect straight line sloping up
 - r = -1: scatter is perfect straight line sloping down
- r = 0: No linear association; uncorrelated

Correlation Coefficient (r) =

average of product of standard(x) and standard(y)Steps:4321

Measures how clustered the scattered data are around a straight line

R is not affected by:

- Changing the units of the measurement of the data
 - Because *r* is based on standard units
- Which variable is plotted on the x- and y-axes
 - Because the product of standard units is the same

Interpreting r

Copyright © 2016 Barnard College

Be careful ...

- Correlation measures linear association
- Association doesn't imply causation
- Two variables might be correlated, but that doesn't mean one causes the other

Both can affect correlation

Draw a scatter plot before computing r

Ecological Correlation

- Correlations based on groups or aggregated data
- Can be misleading:
 - For example, they can be artificially high

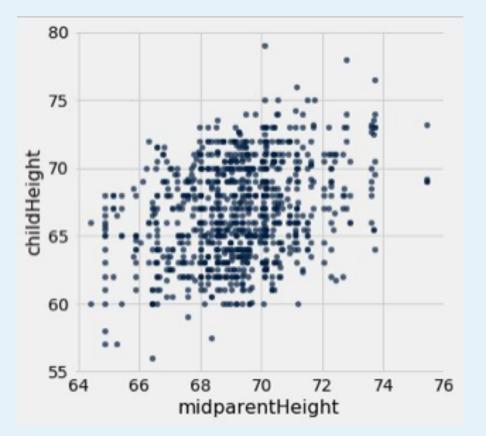
Prediction

Copyright © 2016 Barnard College

Guess the future

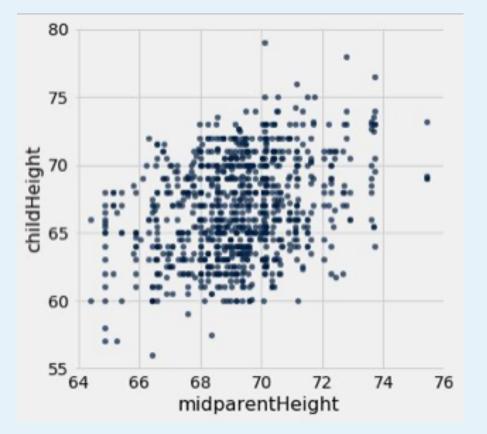
- Based on incomplete information
- One way of making predictions:
 - To predict an outcome for an individual,
 - find others who are like that individual
 - and whose outcomes you know.
 - Use those outcomes as the basis of your prediction.

Galton's Heights



Goal: Predict the height of a new child, based on that child's midparent height

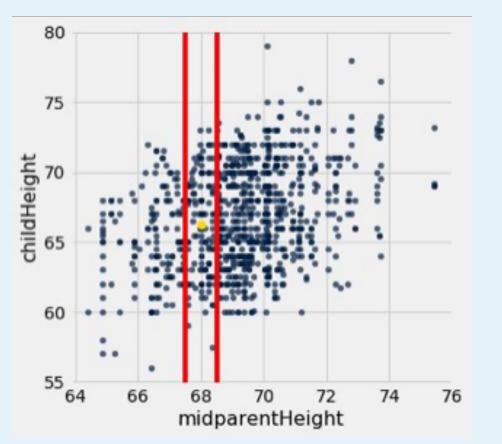
Galton's Heights



How can we predict a child's height given a midparent height of 68 inches?

Idea: Use the average height of the children of all families where the midparent Height is close to to 68 inches

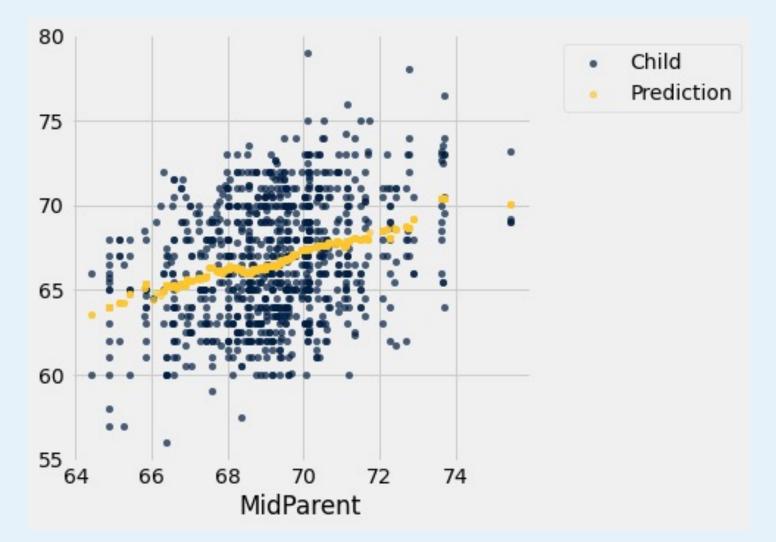
Galton's Heights



How can we predict a child's height given a midparent height of 68 inches?

Idea: Use the average height of the children of all families where the midparent Height is close to to 68 inches

Predicted Heights



For each x value, the prediction is the average of the y values in its nearby group.

The graph of these predictions is the graph of averages

If the association between x and y is linear, then points in the graph of averages tend to fall on a line. The line is called the **regression line**

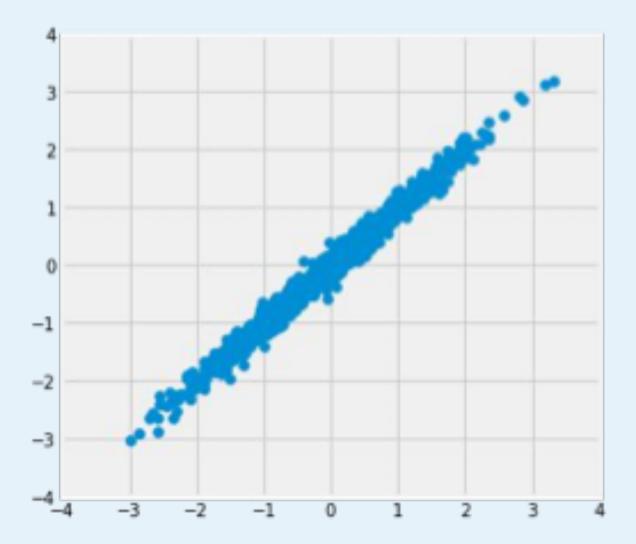
A method for predicting a numerical y, given a value of x:

- Identify the group of points where the values of x are close to the given value
- The prediction is the average of the y values for the group

Linear Regression

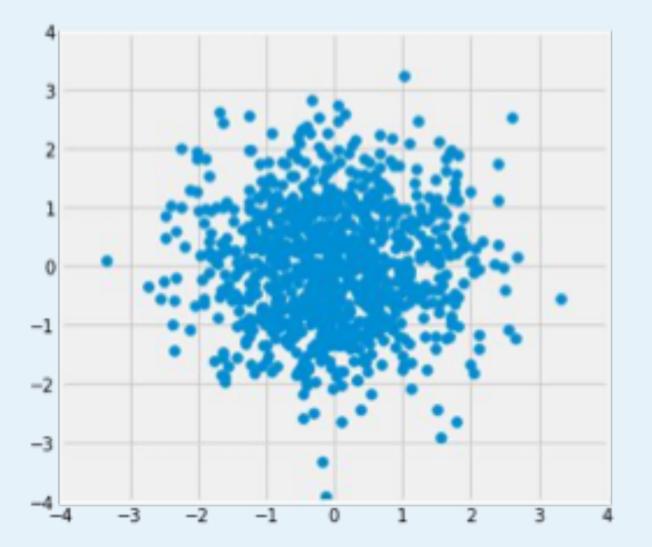
Copyright © 2016 Barnard College

Where is the prediction line?



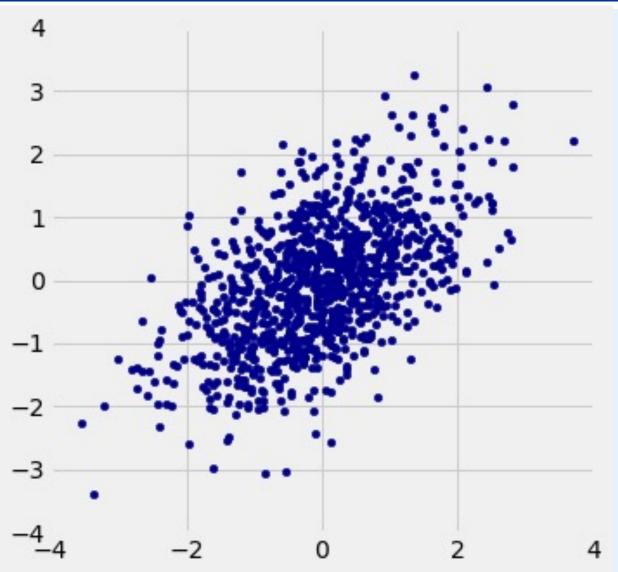
r = 0.99

Where is the prediction line?



r = 0.0

Where is the prediction line?



Copyright S 2010 Damard College

r = 0.5

If the scatter plot is oval shaped, then we can spot an important feature of the regression line

A statement about x and y pairs

- Measured in standard units
- Describing the deviation of x from 0 (the average of x's)
- And the deviation of y from 0 (the average of y's)

On average,

y deviates from 0 less than x deviates from 0

$$y_{su} = r \times x_{su}$$

Slope and Intercept

Copyright © 2016 Barnard College

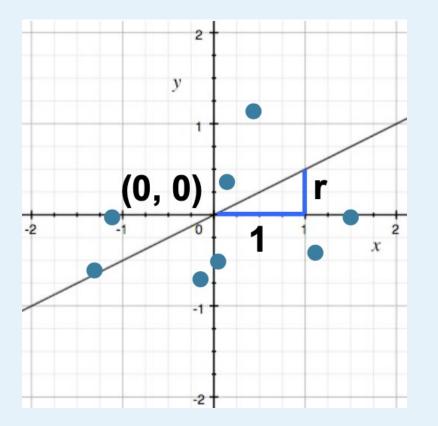
In original units, the regression line has this equation:

$$\frac{estimate of y - mean(y)}{SD of y} = r \times \frac{given x - mean(x)}{SD of x}$$

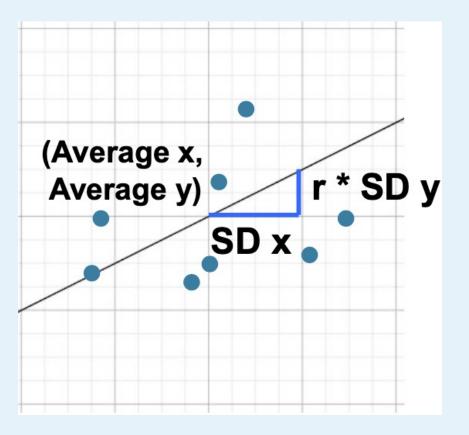
Lines can be expressed by slope & intercept $y = slope \times x + intercept$

Regression Line

Standard Units



Original Unites



estimate of
$$y = slope * x + intercept$$

slope of the regression line $r * \frac{SD \ of \ y}{SD \ of \ x}$

intercept of the regression line $mean(y) - slope \times mean(x)$