BC COMS 1016: Intro to Comp Thinking \& Data Science

Lecture 20 Standard Deviation Normal Distributions Correlation

Announcements

- Project 2:
- due Monday 04/18
- No Lab this week
- Homework 7 - Confidence Intervals, Resampling, the Bootstrap, and the Central Limit Theorem
- Due Thursday 04/07
- Dropping 1 homeworks and 1 lab
- Speak up!!
- More posts on ed-stem - great job!

Data Science in this course

- Exploration
- Discover patterns in data
- Articulate insights (visualizations)
- Inference
- Make reliable conclusions about the world
- Statistics is useful
- Prediction
- Informed guesses about unseen data

Center \& Spread

Questions/Goals

- How can we quantify natural concepts like "center" and "variability"?
- Why do many of the empirical distributions that we generate come out bell shaped?
- How is sample size related to the accuracy of an estimate?

Question

- Which is bigger, median or mean?

Comparing Mean and Median

- Mean: Balance point of the histogram
- Median: Half-way point of data; half the area of histogram is on either side of median
- If the distribution is symmetric about a value, then that value is both the average and the median.
- If the histogram is skewed, then the mean is pulled away from the median in the direction of the tail.

Standard Deviation

Defining Variability

- Plan A: "biggest value - smallest value"
- Doesn't tell us much about the shape of the distribution
- In other words, doesn't tell us where most values are
- Plan B:
- Measure variability around the mean
- Need to figure out a way to quantify this

How far from the average?

- Standard deviation (SD) measures roughly how far the data are from their average
- SD = root mean square of deviations from average Steps: 544
- SD has the same units as the data

Why use Standard Deviation

- There are two main reasons.
- The first reason:
- No matter what the shape of the distribution, the bulk of the data are in the range "average plus or minus a few SDs"
- The second reason:
- Relation with the bellshaped curve
- Discuss this later

Q: How big are most values? A: Chebyshev's Inequality

How big are most values?

No matter what the shape of the distribution, the bulk of the data are in the range "average \pm a few SDs"

Chebyshev's Inequality

No matter what the shape of the distribution, the proportion of values in the range "average $\pm z$ SDs" is

$$
\text { at least } 1-1 / z 2
$$

Chebyshev's Bounds

Range
Proportion

Chebyshev's Bounds

Range	Proportion
average ± 2 SDs	at least $1-1 / 4(75 \%)$

Chebyshev's Bounds

Range	Proportion
average ± 2 SDs	at least $1-1 / 4(75 \%)$
average ± 3 SDs	at least $1-1 / 9(88.888 \ldots \%)$

Chebyshev's Bounds

Range	Proportion
average ± 2 SDs	at least $1-1 / 4(75 \%)$
average ± 3 SDs	at least $1-1 / 9(88.888 \ldots \%)$
average ± 4 SDs	at least $1-1 / 16(93.75 \%)$

Chebyshev's Bounds

Range	Proportion
average ± 2 SDs	at least $1-1 / 4(75 \%)$
average ± 3 SDs	at least $1-1 / 9(88.888 \ldots \%)$
average ± 4 SDs	at least $1-1 / 16(93.75 \%)$
average ± 5 SDs	at least $1-1 / 25(96 \%)$

True no matter what the distribution looks like

Understanding HW05 Results

Statistics:
Minimum: 7.5
Maximum: 29.0
Mean: 24.55
Median: 25.0
Standard Deviation: 3.96

- At least 50\% of the class had scores between 20.59 and 28.51
- At least 75\% of the class had scores between 16.62 and 32.47

Standard Units

- How many SDs above average?
- z = (value - average)/SD
- Negative z: value below average
- Positive z: value above average
- $z=0$: value equal to average
- When values are in standard units: average $=0$, SD $=1$
- Chebyshev: At least 96\% of the values of z are between -5 and 5

Age in Years Age in Standard Units

What whole numbers are	27	-0.0392546
closest to	33	0.992496
(1) Average age	28	0.132704
(2) The SD of ages	23	-0.727088
	25	-0.383171
	33	0.992496
	23	-0.727088
	25	-0.383171
	30	0.476621

Age in Years Age in Standard Units
(1) Average age is close to 27 (standard unit here is close to 0)

27	-0.0392546
33	0.992496
28	0.132704
23	-0.727088
25	-0.383171
33	0.992496
23	-0.727088
25	-0.383171
30	0.476621
27	-0.0392546

The SD and the Histogram

- Usually, it's not easy to estimate the SD by looking at a histogram.
- But if the histogram has a bell shape, then you can

The SD and Bell Shaped Curves

If a histogram is bell-shaped, then

- the average is at the center
- the SD is the distance between the average and the points of inflection on either side

Points of Inflection

Normal Distribution

Standard Normal Curve

Equation for the normal curve

$$
\phi(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}}, \quad-\infty<z<\infty
$$

Bell Curve

No matter what the shape of the distribution,

 the bulk of the data are in the range "average \pm a few SDs"If a histogram is bell-shaped, then

- Almost all of the data are in the range "average ± 3 SDs

Bounds and Approximations

Percent in Range

Average +- 1 SD +- 2 SDs

Average +- 3 SDs

Average At least 75\% About 95\%

All

Distributions
At least 0\% About 68\%

At least
88.888...\%

Normal Distributions

A "Central" Area

Average ± 2 SDs: 95% of the area
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

Standard Units

Central Limit Theorem

Central Limit Theorem

If the sample is

- large, and
- drawn at random with replacement,

Then, regardless of the distribution of the population,
the probability distribution of the sample sum (or the sample average) is roughly normal

Sample Average

- We often only have a sample
- We care about sample averages because they estimate population averages.
- The Central Limit Theorem describes how the normal distribution (a bell-shaped curve) is connected to random sample averages.
- CLT allows us to make inferences based on averages of random samples

Correlation

Prediction

- To predict the value of a variable:
- Identify (measurable) attributes that are associated with that variable
- Describe the relation between the attributes and the variable you want to predict
- Then, use the relation to predict the value of a variable

Visualizing Two Numerical Variables

- Trend
- Positive association
- Negative association
- Pattern
- Any discernible "shape" in the scatter
- Linear
- Non-linear

Visualize, then quantify

The Correlation Coefficient r

- Measures linear association
- Based on standard units
- $-1 \leq r \leq 1$
- $r=1$: scatter is perfect straight line sloping up
- $r=-1$: scatter is perfect straight line sloping down
- $r=0$: No linear association; uncorrelated

Definition of r

Correlation Coefficient (r) =

average of product of standard(x) and standard(y)

Steps:
 4
 3
 2
 1

Measures how clustered the scattered data are around a straight line

Operations that leave r unchanged

R is not affected by:

- Changing the units of the measurement of the data
- Because r is based on standard units
- Which variable is plotted on the x - and y-axes
- Because the product of standard units is the same

Interpreting r

Causal Conclusion

Be careful ...

- Correlation measures linear association
- Association doesn't imply causation
- Two variables might be correlated, but that doesn't mean one causes the other

Nonlinearity and Outliers

Both can affect correlation

- Draw a scatter plot before computing r

Ecological Correlation

- Correlations based on groups or aggregated data
- Can be misleading:
- For example, they can be artificially high

Prediction

Guess the future

- Based on incomplete information
- One way of making predictions:
- To predict an outcome for an individual,
- find others who are like that individual
- and whose outcomes you know.
- Use those outcomes as the basis of your prediction.

Galton's Heights

Goal: Predict the height of a new child, based on that child's midparent height

Galton's Heights

How can we predict a child's height given a midparent height of 68 inches?

Idea: Use the average height of the children of all families where the midparent Height is close to to 68 inches

Galton's Heights

How can we predict a child's height given a midparent height of 68 inches?

Idea: Use the average height of the children of all families where the midparent Height is close to to 68 inches

Predicted Heights

Graph of Average

For each x value, the prediction is the average of the y values in its nearby group.

The graph of these predictions is the graph of averages

If the association between x and y is linear, then points in the graph of averages tend to fall on a line. The line is called the regression line

Nearest Neighbor Regression

A method for predicting a numerical y, given a value of x :

- Identify the group of points where the values of x are close to the given value
- The prediction is the average of the y values for the group

Linear Regression

Where is the prediction line?

Where is the prediction line?

$$
r=0.0
$$

Where is the prediction line?

[^0]
Identifying the Line

- If the scatter plot is oval shaped, then we can spot an important feature of the regression line

Linear Regression

A statement about x and y pairs

- Measured in standard units
- Describing the deviation of x from 0 (the average of x's)
- And the deviation of y from 0 (the average of y 's)

On average,
y deviates from 0 less than x deviates from 0

$$
y_{s u}=r \times x_{s u}
$$

Slope and Intercept

Regression Line Equation

In original units, the regression line has this equation:

$$
\frac{\text { estimate of } y-\operatorname{mean}(y)}{S D \text { of } y}=r \times \frac{\operatorname{given} x-\operatorname{mean}(x)}{S D \text { of } x}
$$

Lines can be expressed by slope \& intercept

$$
y=\text { slope } \times x+\text { intercept }
$$

Regression Line

Standard Units

Original Unites

Slope and Intercept

estimate of $y=$ slope $* x+$ intercept

$$
\begin{aligned}
& \text { slope of the regression line } \\
& \qquad r * \frac{S D \text { of } y}{S D \text { of } x}
\end{aligned}
$$

intercept of the regression line

mean $(y)-$ slope \times mean (x)

[^0]: טupyriyit』 « ᄂ iv Dallialu vulleye

