BC COMS 1016: Intro to Comp Thinking \& Data Science

Lecture 20 Correlation Linear Regression

Announcements

- Project 2 :
- due Monday 04/18
- Lab 8:
- Due Monday 04/18
- Homework 8 - Regression
- Due Monday 04/18
- Dropping 1 homeworks and 1 lab

Remaining Assignments

- 3 more HWs:
- HW08, HW09, HW10
- 1 more project:
- Project 3 - Classification
- working with movie scripts
- 2 more labs:
- Lab08 - this week
- Lab09 - last week

Data Science in this course

- Exploration
- Discover patterns in data
- Articulate insights (visualizations)
- Inference
- Make reliable conclusions about the world
- Statistics is useful
- Prediction
- Informed guesses about unseen data

Correlation

Prediction

- To predict the value of a variable:
- Identify (measurable) attributes that are associated with that variable
- Describe the relation between the attributes and the variable you want to predict
- Then, use the relation to predict the value of a variable

Visualizing Two Numerical Variables

- Trend
- Positive association
- Negative association
- Pattern
- Any discernible "shape" in the scatter
- Linear
- Non-linear

Visualize, then quantify

The Correlation Coefficient r

- Measures linear association
- Based on standard units
- $-1 \leq r \leq 1$
- $r=1$: scatter is perfect straight line sloping up
- $r=-1$: scatter is perfect straight line sloping down
- $r=0$: No linear association; uncorrelated

Definition of r

Correlation Coefficient (r) =

average of product of standard(x) and standard(y)

Steps:
 4
 3
 2
 1

Measures how clustered the scattered data are around a straight line

Operations that leave r unchanged

R is not affected by:

- Changing the units of the measurement of the data
- Because r is based on standard units
- Which variable is plotted on the x - and y-axes
- Because the product of standard units is the same

Interpreting r

Causal Conclusion

Be careful ...

- Correlation measures linear association
- Association doesn't imply causation
- Two variables might be correlated, but that doesn't mean one causes the other

Nonlinearity and Outliers

Both can affect correlation

- Draw a scatter plot before computing r

Ecological Correlation

- Correlations based on groups or aggregated data
- Can be misleading:
- For example, they can be artificially high

Prediction

Guess the future

- Based on incomplete information
- One way of making predictions:
- To predict an outcome for an individual,
- find others who are like that individual
- and whose outcomes you know.
- Use those outcomes as the basis of your prediction.

Galton's Heights

Goal: Predict the height of a new child, based on that child's midparent height

Galton's Heights

How can we predict a child's height given a midparent height of 68 inches?

Idea: Use the average height of the children of all families where the midparent Height is close to to 68 inches

Galton's Heights

How can we predict a child's height given a midparent height of 68 inches?

Idea: Use the average height of the children of all families where the midparent Height is close to to 68 inches

Predicted Heights

Graph of Average

For each x value, the prediction is the average of the y values in its nearby group.

The graph of these predictions is the graph of averages

If the association between x and y is linear, then points in the graph of averages tend to fall on a line. The line is called the regression line

Nearest Neighbor Regression

A method for predicting a numerical y, given a value of x :

- Identify the group of points where the values of x are close to the given value
- The prediction is the average of the y values for the group

Linear Regression

Where is the prediction line?

Where is the prediction line?

$$
r=0.0
$$

Where is the prediction line?

Identifying the Line

- If the scatter plot is oval shaped, then we can spot an important feature of the regression line

Linear Regression

A statement about x and y pairs

- Measured in standard units
- Describing the deviation of x from 0 (the average of x's)
- And the deviation of y from 0 (the average of y's)

On average,
y deviates from 0 less than x deviates from 0

$$
y_{s u}=r \times x_{s u}
$$

Slope and Intercept

Regression Line Equation

In original units, the regression line has this equation:

$$
\frac{\text { estimate of } y-\operatorname{mean}(y)}{S D \text { of } y}=r \times \frac{\operatorname{given} x-\operatorname{mean}(x)}{S D \text { of } x}
$$

Lines can be expressed by slope \& intercept

$$
y=\text { slope } \times x+\text { intercept }
$$

Regression Line

Standard Units

Original Unites

Slope and Intercept

estimate of $y=$ slope $* x+$ intercept

$$
\begin{aligned}
& \text { slope of the regression line } \\
& \qquad r * \frac{S D \text { of } y}{S D \text { of } x}
\end{aligned}
$$

intercept of the regression line

mean $(y)-$ slope \times mean (x)

Prediction with Linear Regression

Goal: Predict y using x

Examples:

- Predict \# hospital beds available using air pollution
- Predict house prices using house size
- Predict \# app users using \# app downloads

Regression Estimate

Goal: Predict y using x

To find the regression estimate oy y :

- Convert the given x to standard units
- Multiply by r
- That's the regression estimate of y, but:
- It's in standard units
- So convert it back to the original units of y

Regression Line Equation

In original units, the regression line has this equation:

$$
y_{s u}=r \times x_{s u}
$$

Discussion Question

Based only on the graph, which must be true?

1. Going to college causes people to earn more.
2. For any district, having more college-educated people live there causes median incomes to rise.
3. For any district, having a higher median income causes more college-educated people to move there.

USA Congressional Districts 2016

Error in Estimation

- error = actual value - estimate
- Typically, some errors are positive and some are negative
- To measure the rough size of the errors
- square the errors to eliminate cancellation
- Take the mean of the squared errors
- Take the square root to fix the units
- Root mean square error (rmse)

Least Squares Line

- Minimized the root mean squared error among all lines
- Equivalently, minimizes the mean squared error among all lines
- Names:
- "Best fit" line
- Least squares line
- Regression line

Numerical Optimization

- Numerical minimization is approximate but effective
- Lots of machine learning uses numerical minimization (demo)
- If the function mse(\mathbf{a}, \mathbf{b}) returns the mse of estimation using the line "estimate $=a x+b$ ",
- then minimize(mse)returns array [a0, b0]
- a0 is the slope and b0 the intercept of the line that minimizes the mse among lines with arbitrary slope a and arbitrary intercept b (that is, among all lines)

Residiuals

- Error in regression estimate
- One residual corresponding to each point (x, y)
- residual
= observed y - regression estimate of y
$=$ observed y - height of regression line at x
= vertical distance between the point and the best line

Residual Plot

A scatter diagram of residuals

- Should look like an unassociated blob for linear relations
- But will show patterns for non-linear relations
- Used to check whether linear regression is appropriate
- Look for curves, trends, changes in spread, outliers, or any other patterns

Properties of residuals

- Residuals from a linear regression always have
- Zero mean
- (so rmse = SD of residuals)
- Zero correlation with x
- Zero correlation with the fitted values
- These are all true no matter what the data look like
- Just like deviations from mean are zero on average

