BC COMS 1016: Intro to Comp Thinking \& Data Science

 Lecture 22 Linear Regression, Least Squares, \& Residuals

Announcements

- Lab 8 - Regression
- Due Monday 04/18
- Homework 8 - Linear Regression
- Due Monday 04/18
- Project 2
- Due Monday 04/18

Grading - Rubric 1

Participation	5%
Weekly HW	25%
Projects	20%
Midterm + daily quizzes	25%
Final Project	25%

Grading - Rubric 2

Participation	10%
Weekly HW	35%
Projects	30%
Midterm + daily quizzes	0%
Final Project	25%

Announcements

- Project 3
- Optional, if electing to rubric 2

Prediction

Correlation

Guess the future

- Based on incomplete information
- One way of making predictions:
- To predict an outcome for an individual,
- find others who are like that individual
- and whose outcomes you know.
- Use those outcomes as the basis of your prediction.

Galton's Heights

Goal: Predict the height of a new child, based on that child's parents' heights. predict a child's height.

Idea: Use the average height of the children of all families where the midparent Height is close to the child's parents

Predicted Heights

- Child

Prediction

Graph of Average

For each x value, the prediction is the average of the y values in its nearby group.

The graph of these predictions is the graph of averages

If the association between x and y is linear, then points in the graph of averages tend to fall on a line.

The line is called the regression line

Nearest Neighbor Regression

A method for predicting a numerical y, given a value of x :

- Identify the group of points where the values of x are close to the given value
- The prediction is the average of the y values for the group

Linear Regression

Linear Regression

A statement about x and y pairs

- Measured in standard units
- Describing the deviation of x from 0
- (the average of x's)
- And the deviation of y from 0
- (the average of y's)

On average,
y deviates from 0 less than x deviates from 0

$$
y_{s u}=r \times x_{s u}
$$

Slope and Intercept

Regression Line Equation

In original units, the regression line has this equation:

$$
\begin{gathered}
y_{s u}=r \times x_{s u} \\
\frac{\text { estimate of } y-\operatorname{mean}(y)}{S D \text { of } y}=r \times \frac{\operatorname{given} x-\operatorname{mean}(x)}{S D \text { of } x}
\end{gathered}
$$

Lines can be expressed by slope \& intercept

$$
y=\text { slope } \times x+\text { intercept }
$$

Regression Line

Standard Units

Original Unites

Slope and Intercept

estimate of $y=$ slope $* x+$ intercept

$$
\begin{aligned}
& \text { slope of the regression line } \\
& \qquad r * \frac{S D \text { of } y}{S D \text { of } x}
\end{aligned}
$$

intercept of the regression line mean (y)-slope \times mean (x)

Discussion Question

- Suppose we use linear regression to predict candy prices (in dollars) from sugar content (in grams). What are the units of each of the following?
- R
- The slope
- The intercept

Prediction with Linear Regression

Goal: Predict y using x

Examples:

- Predict \# hospital beds available using air pollution
- Predict house prices using house size
- Predict \# app users using \# app downloads

Regression Estimate

Goal: Predict y using x

To find the regression estimate oy y :

- Convert the given x to standard units
- Multiply by r
- That's the regression estimate of y, but:
- It's in standard units
- So convert it back to the original units of y

Regression Line Equation

In original units, the regression line has this equation:

$$
y_{s u}=r \times x_{s u}
$$

Discussion Question

Based only on the graph, which must be true?

1. Going to college causes people to earn more.
2. For any district, having more college-educated people live there causes median incomes to rise.
3. For any district, having a higher median income causes more college-educated people to move there.

USA Congressional Districts 2016

Error in Estimation

- error = actual value - estimate
- Typically, some errors are positive and some are negative
- To measure the rough size of the errors
- square the errors to eliminate cancellation
- Take the mean of the squared errors
- Take the square root to fix the units
- Root mean square error (rmse)

Least Squares Line

- Minimized the root mean squared error among all lines
- Equivalently, minimizes the mean squared error among all lines
- Names:
- "Best fit" line
- Least squares line
- Regression line

Numerical Optimization

- Numerical minimization is approximate but effective
- Lots of machine learning uses numerical minimization (demo)
- If the function mse(\mathbf{a}, b) returns the mse of estimation using the line "estimate $=a x+b$ ",
- then minimize(mse)returns array [a0, b0]
- a0 is the slope and b0 the intercept of the line that minimizes the mse among lines with arbitrary slope a and arbitrary intercept b (that is, among all lines)

Residiuals

- Error in regression estimate
- One residual corresponding to each point (x, y)
- residual
= observed y - regression estimate of y
$=$ observed y - height of regression line at x
= vertical distance between the point and line

Regression Dlagnostics

Residual Plot

A scatter diagram of residuals

- For linear relations, plotted residuals should look like an unassociated blob
- For non-linear relations, the plot will show patterns
- Used to check whether linear regression is appropriate
- Look for curves, trends, changes in spread, outliers, or any other patterns

Properties of residuals

- The mean of residuals is always 0
- Variance is standard deviation squared
- (Variance of residuals) / (Variance of $y)=1-r^{2}$
- (Variance of fitted values) / (Variance of y) $=r^{2}$
- Variance of $y=$
(Variance of fitted values) + (Variance of residuals)

