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Lecture 23 –
Residuals & 

Regression Inference



Announcements 

§ No lab this week

§ Homework 9 - Regression Inference
• Due Monday 04/25

§ Course Evaluations:
•

§ Project 3:
• Due Monday 05/02
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Rubrics

§ Rubric 1:
• Projects (not final 

project): 45%
• Homeworks: 25%
• Participation: 5%

• Project 3 required

We will compute scores for both Rubrics and 
then use whichever is best for each student

§ Rubric 2:
• Projects (not final 

project): 30%
• Homeworks: 35%
• Participation 10%

• Project 3 optional
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Linear Regression
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Finding the best-fit line

§ Compute correlation coefficient (r)
• Prediction in standard units

§ Find slope and intercept of the data
• Prediction in original units
• slope = r * sd(y) / sd(x)
• intercept = mean(y) – slope * mean(x)

§ Numerical Optimization:
• Use a compute to find slope and intercept to minimize y

y = slope * x + intercept
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Residuals
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Residiuals

§ Error in regression estimate 

§ One residual corresponding to each point (x, y) 

§ residual
= observed y - regression estimate of y
= observed y - height of regression line at x
= vertical distance between the point and line 
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Regression Diagnostics
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Residual Plot

A scatter diagram of residuals
§ For linear relations, plotted residuals should look 

like an unassociated blob 
§ For non-linear relations, the plot will show 

patterns
§ Used to check whether linear regression is 

appropriate 
§ Look for curves, trends, changes in spread, 

outliers, or any other patterns 
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Properties of residuals

§ The mean of residuals is always 0

§ Variance is standard deviation squared

§ (Variance of residuals) / (Variance of y) = 1 – r2

§ (Variance of fitted values) / (Variance of y) = r2

§ Variance of y = 
(Variance of fitted values) + (Variance of residuals)
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SD of Fitted (Predicted) Values

§ We just said 
• (Variance of fitted values) / (Variance of y) = r2

• variance is standard deviations squared, 

§ So:
• !"	$%	%&''()	*+,-(. 

!"	$%	/
= 𝑟

• 𝑆𝐷	𝑜𝑓	𝑓𝑖𝑡𝑡𝑒𝑑	𝑣𝑎𝑙𝑢𝑒𝑠	 = 𝑟 	∗ 𝑆𝐷	𝑜𝑓	𝑦

• A+B&+CD(	$%	%&''()	*+,-(.
A+B&+CD(	$%	/

= 𝑟E
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Variance of Fitted (Predicted) Values

§ Variance = Square of the SD
= Mean Square of the Deviations

§ Variance has weird units, but good math 
properties

§
A+B&+CD(	$%	%&''()	*+,-(.

A+B&+CD(	$%	/
= 𝑟E
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A Variance Decomposition

By definition,
y = fitted values + residuals

Var(y) = Var(fitted values) + Var(residuals)
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A Variance Decomposition

Var(y) = Var(fitted values) + Var(residuals)

§
A+B&+CD(	$%	%&''()	*+,-(. 

A+B&+D(	$%	/
= 𝑟E

§
A+B&+CD(	$%	B(.&)-+,.	

A+B&+D(	$%	/
= 1	 −	𝑟E
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A Variance Decomposition

Var(y) = Var(fitted values) + Var(residuals)

§
!"	$%	%&''()	*+,-(. 

A+B&+D(	$%	/
= |𝑟|

§
!"	$%	B(.&)-+,.	
A+B&+D(	$%	/

= √(1	 −	𝑟E)
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Residual Average and SD

§ The average of residuals is always 0

§
A+B&+CD(	$%	B(.&)-+,.	

A+B&+D(	$%	/
= 1	 −	𝑟E

§ SD of residuals      = SD of y, not √(1	 −	𝑟E)
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Question 1

Midterm:   Average 70, SD 10
Final:        Average 60, SD 15

r = 0.6

The SD of the residuals is ____.
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Question 2 

Midterm:  Average 70, SD 10 
Final:        Average 60, SD 15 

r = 0.6 

For at least 75% of the students, the regression 
estimate of final score based on midterm score will 
be correct to within ___________ points. 
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Regression Model
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A “Model”: Signal + Noise

Copyright © 2016 Barnard College 20

Distance 
drawn at 
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Another 
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from the same 

distribution



What we get to see
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Prediction Variability
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Regression Prediction

§ If the data come from the regression model,
§ And if the sample is large, then:

§ The regression line is close to the true line
§ Given a new value of x, predict y by finding the 

point on the regression line at that x
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Confidence Interval for Prediction

§ Bootstrap the scatter plot 
§ Get a prediction for y using the regression 

line that goes through the resampled plot 
§ Repeat the two steps above many times 
§ Draw the empirical histogram of all the 

predictions. 
§ Get the “middle 95%” interval. 
§ That’s an approximate 95% confidence interval 

for the height of the true line at y. 
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Predictions at Different Values of x

§ Since y is correlated with x, the predicted values 
of y depend on the value of x. 

§ The width of the prediction’s CI also depends on 
x. 
• Typically, intervals are wider for values of x that are 

further away from the mean of x. 
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Inference about the 
True Slope
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Confidence Interval for True Slope

§ Bootstrap the scatter plot. 
§ Find the slope of the regression line through 

the bootstrapped plot. 
§ Repeat. 
§ Draw the empirical histogram of all the 

generated slopes. 
§ Get the “middle 95%” interval. 
§ That’s an approximate 95% confidence interval 

for the slope of the true line.
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Test Whether There Really is a Slope

§ Null hypothesis: The slope of the true line is 0. 
§ Alternative hypothesis: No, it’s not. 
§ Method: 

• Construct a bootstrap confidence interval for the true 
slope. 

• If the interval doesn’t contain 0, the data are more 
consistent with the alternative 

• If the interval does contain 0, the data are more 
consistent with the null 
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Advanced Regression

§ minimize() works no matter what*!

§ Define a function that computes the prediction 
you want, then the error you want, for example: 
• Nonlinear functions of x 
• Multiple columns of the table for x 
• Other kinds of error instead of RMSE 

§ Nonlinear functions can get complicated, fast!

Copyright © 2016 Barnard College 29



Classification
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Classifiers
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Training a Classifier
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Predicted
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Nearest Neighbor Classifier
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an example

NN Classifier:
Use the label of 
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training example

Predicted
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Population Sample Labels

Training Set

Test Set



Distance
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Pythagoras’ Formula
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Distance Between Two Points

§ Two attributes x and y:
𝐷 =	 ( 𝑥M − 𝑥N E� + 𝑦M − 𝑦N E	)

§ Three attributes x, y, and z:

• 𝐷 =	 ( 𝑥M − 𝑥N E� + 𝑦M − 𝑦N E	 + 𝑧M − 𝑧N E	)
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