BC COMS 1016: Intro to Comp Thinking & Data Science

Lecture 3 Tables, Array, Sequences

Copyright © 2016 Barnard College

Reminders

HW00 due Thursday night

- Individual assignment
- Ask questions in EdStem #homeworks
- Answer your peers questions as well
 - Can count for participation grade
- Lab00 due last night

Gradescope Upload

- Unzip the file from JupyterHub
- Upload the pdf and .ipynb files to gradescope
- Don't include a ".OTTER_log" file

Office Hours

- Adam: Tuesdays, 1pm 2pm
- Dingwen: Wednesdays, 10am 11:30 am
- Saloni: Tuesdays, 4pm 5.30pm
- Yosha: Fridays, 4pm 5.30pm
- Pranathi Srirangam: Mondays, 8.30pm 9.30pm
- Esha Julka: Wednesdays, 4.30pm 5.30pm
- Xueqing Ma: Mondays, 4pm 5pm

Barnard CS Help Room

- Mondays: 1 pm 3 pm
- Tuesdays: 12pm 2pm, 5pm 7pm
- Wednesdays: 2pm 5pm
- Thursdays: 10 am 12 pm, 4pm 6pm

Question 1.1. In the next cell, assig

1. the **absolute value** of $2^5 - 2^1$ 2. 5 × 13 × 31 + 5.

Try to use just one statement (one I

new_year = ...
new_year

grader.check("ql_1")

Autograders/Grading – Error 1


```
NameError Traceback (most recent call last)
<ipython-input-1-lad9a283f073> in <module>()
----> 1 grader.check("q1_1")
```

NameError: name 'grader' is not defined

Initialize Otter import otter grader = otter.Notebook()

NameError: name 'new_year' is not defined

In [2]: grader.check("ql_1")

Grading based on autograder

Before we "publish" scores

- Visible:
 - Status of tests (pass/fail)
 - Errors of failing test
- Not visible
 - points associated with the tests
- Publish results after the assignment submission is closed
 - At least 2 days after deadline
 - Likely more

Cause & Effect

Cause & Effect

https://www.tylervigen.com/spurious-correlations

We've seen 5 types so far:

- int: 2
- float: 2.2
- str: 'Red fish, blue fish'
- builtin_function_or_method: abs, max, min

The type function tells you the type of a value

- type(2)
- type(2+2)

An expression's "type" is based on its value

- x = 2
- type(x) = ???

Strings that contain numbers can be converted to numbers

- int("12")
- float("1.2")
- float("one point two") # Not a good idea

Any value can be converted to a string

• str(6)

Numbers can be converted to other numeric types

- float(1)
- int(2.3). # DANGER: why is this a bad idea

Table Structure

- A Table is a sequence of labeled columns
- Row: represents one individual
- Column: represents one attribute of the individuals

Name	Code	Area (m2)
California	CA	163696
Nevada	NV	110567

 Table.read_table(filename) – reads a table from a spreadsheet

Table() – an empty table

Table methods

- Creating and extending tables:
 - Table().with_column and Table.read_table
- Finding the size:
 - num_rows , num_columns
- Referring to columns: labels, relabeling and indices
 - labels and relabeled; column indices start at 0

Some Table Operations

- t.select(label) constructs a new table with just the specified columns
- t.drop(label) constructs a new table in which the specified columns are omitted
- t.sort(label) constructs a new table with rows sorted by the specified column
- t.where(label, condiction) constructs a new table with just the rows that match the condition
- These operations create a new table

Copyright © 2016 Barnard College

An array contains a sequence of values

- All elements of an array should have the same type
- Arithmetic is applied to each element individually
- Adding arrays add elements (if same length!)
- A column of a table is in an array

A range is an array of consecutive numbers

- np.arange(end):
 An array of increasing integers from 0 up to end
- np.arange(start, end):
 An array of increasing integers from start up to end
- np.arrange(start, end, step):
 A range with step between consecutive values

The range always include start but excludes end

Array Functions & Methods

Name	Chapter	Description
max(array)	3.3	Returns the maximum value of an array
min(array)	3.3	Returns the minimum value of an array
sum(array)	3.3	Returns the sum of the values in an array
abs(num), np.abs(array)	3.3	Take the absolute value of number or each number in an array.
round(num), np.round(array)	3.3	Round number or array of numbers to the nearest integer.
len(array)	3.3	Returns the length (number of elements) of an array
<pre>make_array(val1, val2,)</pre>	5	Makes a numpy array with the values passed in
<pre>np.average(array) np.mean(array)</pre>	5.1	Returns the mean value of an array
np.std(array)	14.2	Returns the standard deviation of an array
np.diff(array)	5.1	Returns a new array of size <u>len(arr)-1</u> with elements equal to the difference between adjacent elements; val_2 - val_1, val_3 - val_2, etc.
np.sqrt(array)	5.1	Returns an array with the square root of each element
<pre>np.arange(start, stop, step) np.arange(start, stop) np.arange(stop)</pre>	5.2	An array of numbers starting with start, going up in increments of step, and going up to but excluding stop. When start and/or step are left out, default values are used in their place. Default step is 1; default start is 0.
array.item(index)	5.3	Returns the i-th item in an array (remember Python indices start at 0!)
<pre>np.random.choice(array, n) np.random.choice(array)</pre>	9	Picks one (by default) or some number 'n' of items from an array at random. By default, with replacement.
np.count_nonzero(array)	9	Returns the number of non-zero (or True) elements in an array.
<pre>np.append(array, item)</pre>	9.2	Returns a copy of the input array with item (must be the same type as the other entries in the array) appended to the end.
percentile(percentile, array)	13.1	Returns the corresponding percentile of an array.

Tables & Arrays

Copyright © 2016 Barnard College

Table methods

- Accessing data in a column
 - Column takes a label or index and returns an array
- Using array methods to work with data in columns
 - item, sum, min, max, and so on
- Creating new tables containing some of the original columns
 - select, drop

Constions in the second second

Mulleller.

Copyright © 2016 Barnard College

The table nba has columns

PLAYER, POSITION, and SALARY

table = Table.read_table('https://www.inferentialthinking.com/data/nba_salaries.csv')

1. Create an array containing the names of all centers (C) who make more than \$15M/year

centers = table.where('POSITION', 'C') centers.where('\'15-\'16 SALARY', are.above(15)).column('PLAYER')

Answer:

'Dwight Howard', 'Roy Hibbert', 'Marc Gasol', 'Enes Kanter', 'DeMarcus Cousins'