BC COMS 1016: Intro to Comp Thinking & Data Science

Lecture 4 Arrays, Sequences, Tables

Thursday 01/27/22

Reminders

- HW00 due tonight
 - Individual assignment
 - Only 41 submissions (as of10am today)
 - You can use 2 late days
- Lab01 due Monday
- Lab00:
 - If you havent gotten it in yet, do it before the other assignments
- HW01
 - Will be released tonight
 - Due Thursday 02/03

Office Hours & Next few classes

• Today:

- Adam 1pm-2pm after class
- Next week:
 - Tuesday still remote
 - Thursday TBD
- Tuesday Feb 8th:
 - TA review or watch last year's recording or no class
 - Your choice

Gradescope – Results vs Code View

- / 1.0 pts

Question 6.2

Results Code	STUDENT Adam Poliak		Results Code	<mark>STUDENT</mark> Adam Poliak	
	AUTOGRADER SCORE - / 16.0			AUTOGRADER SCORE - / 16.0	
	QUESTION 2 Question 1	- / 2.0 pts		FAILED TESTS q2_1 - Public (0.0/1.0) q2_2 - Public (0.0/1.0)	
	QUESTION 3 Question 4.3	- / 1.0 pts		q3_1 - Public (0.0/1.0) q3_2 - Public (0.0/1.0) q3_3 - Public (0.0/1.0)	
	QUESTION 4 Question 6.1	- / 2.0 pts		q4_1 - Public (0.0/1.0) q4_2 - Public (0.0/1.0) q5_1 - Public (0.0/1.0)	
	QUESTION 5 Question 6.2	- / 1.0 pts		q5_2 - Public (0.0/1.0) q5_3 - Public (0.0/3.0) q5_4 - Public (0.0/1.0) q8_1 - Public (0.0/1.0)	
	QUESTION 6 Question 6.3	- / 1.0 pts		q7_1 - Public (0.0/1.0) PASSED TESTS q9_1 - Public (0.0/0.0)	
	QUESTION 7 Question 6.4	- / 1.0 pts		QUESTION 2 QUESTION 1	- / 2.0 pts
	QUESTION 8 Question 9.2	- / 0.0 pts		QUESTION 3 Question 4.3	- / 1.0 pts
				QUESTION 4 Question 6.1	- / 2.0 pts
Copyright © 2016	Barnard College			QUESTION 5	

Course Outline

- Exploration
 - Introduction to Python
 - Working with data
- Inference
 - Probability
 - Statistics
- Prediction
 - Machine Learning
 - Regression & Classification

Week 6 - 10

Week 1 - 5

Week 11-14

Course Outline

- Exploration
 - Discover patterns
 - Articulate insights
- Inference
 - Make reliable conclusions about the world
 - Statistics is useful
- Prediction
 - Informed guesses about unseen data

Week 6 - 10

Week 1 - 5

We've seen 5 types so far:

- int: 2
- float: 2.2
- str: 'Red fish, blue fish'
- builtin_function_or_method: abs, max, min
- Table

Table Structure

- A Table is a sequence of labeled columns
- Row: represents one individual
- Column: represents one attribute of the individuals

Name	Code	Area (m2)
California	CA	163696
Nevada	NV	110567

Table methods

- Creating and extending tables:
 - Table().with_column and Table.read_table
- Finding the size:
 - num_rows , num_columns
- Referring to columns: labels, relabeling and indices
 - labels and relabeled; column indices start at 0

- t.select(...) constructs a new table with just the specified columns
- t.drop(...) constructs a new table in which the specified columns are omitted
- These operations create a new table

Tables – select and drop

- .select(<Column Name>)
 - Returns a new table with the specified columns
- .select(<Int i>)
 - Returns a new table with the column at index I
- drop(<Column Name>)
 - Returns a new table without the specified columns
- .drop(<Int i>)
 - Returns a new table without the column at index i

Some Table Operations

- t.sort(label) constructs a new table with rows sorted by the specified column
- t.where(label, condiction) constructs a new table with just the rows that match the condition
- More are listed at <u>http://coms1016.barnard.edu/python-</u> <u>reference.html</u>

An array contains a sequence of values

- All elements of an array should have the same type
- Arithmetic is applied to each element individually
- Adding arrays add elements (if same length!)
- A column of a table is in an array
 - All values in a single column are the same type

A range is an array of consecutive numbers

- np.arange(end):
 An array of increasing integers from 0 up to end
- np.arange(start, end):
 An array of increasing integers from start up to end
- np.arrange(start, end, step):
 A range with step between consecutive values

The range always include start but excludes end

Array Functions & Methods

Name	Chapter	Description
max(array)	3.3	Returns the maximum value of an array
min(array)	3.3	Returns the minimum value of an array
sum(array)	3.3	Returns the sum of the values in an array
abs(num), np.abs(array)	3.3	Take the absolute value of number or each number in an array.
<pre>round(num), np.round(array)</pre>	3.3	Round number or array of numbers to the nearest integer.
len(array)	3.3	Returns the length (number of elements) of an array
<pre>make_array(val1, val2,)</pre>	5	Makes a numpy array with the values passed in
np.average(array) np.mean(array)	5.1	Returns the mean value of an array
np.std(array)	14.2	Returns the standard deviation of an array
np.diff(array)	5.1	Returns a new array of size len(arr)-1 with elements equal to the difference between adjacent elements; val_2 - val_1, val_3 - val_2, etc.
np.sqrt(array)	5.1	Returns an array with the square root of each element
<pre>np.arange(start, stop, step) np.arange(start, stop) np.arange(stop)</pre>	5.2	An array of numbers starting with start, going up in increments of step, and going up to but excluding stop. When start and/or step are left out, default values are used in their place. Default step is 1; default start is 0.
array.item(index)	5.3	Returns the i-th item in an array (remember Python indices start at 0!)
<pre>np.random.choice(array, n) np.random.choice(array)</pre>	9	Picks one (by default) or some number 'n' of items from an array at random. By default, with replacement.
np.count_nonzero(array)	9	Returns the number of non-zero (or True) elements in an array.
<pre>np.append(array, item)</pre>	9.2	Returns a copy of the input array with item (must be the same type as the other entries in the array) appended to the end.
<pre>percentile(percentile, array)</pre>	13.1	Returns the corresponding percentile of an array.

Tables & Arrays

Table methods

- Accessing data in a column
 - Column takes a label or index and returns an array
- Using array methods to work with data in columns
 - item, sum, min, max, and so on
- Creating new tables containing some of the original columns
 - select, drop

Constions in the second second

Mulleller.

The table nba has columns

PLAYER, POSITION, and SALARY

table = Table.read_table('https://www.inferentialthinking.com/data/nba_salaries.csv')

1. Create an array containing the names of all centers (C) who make more than \$15M/year

centers = table.where('POSITION', 'C') centers.where('\'15-\'16 SALARY', are.above(15)).column('PLAYER')

Answer:

'Dwight Howard', 'Roy Hibbert', 'Marc Gasol', 'Enes Kanter', 'DeMarcus Cousins'

Attribute spes

Rull and a

All values in a column of a table should be both the same type **and** be comparable to each other

- **Numerical** values are from a numerical scale
 - Numerical measurements are ordered
 - Differences are meaningful
- Categorical values from a fixed inventory
 - May or may not have an ordering
 - Categories are the same or different

Values as numbers are not guaranteed to be numerical

- Census example: SEX code (0, 1, 2)
- Arithmetic on these "numbers" is meaningless
- The variable SEX is still categorical, even though numbers were used for the categories

Census Data

- Every ten years, Census Bureau counts how many people there are in the U.S.
- Census Bureau estimates how many people are in US during the other 9 years
- U.S. Constitution Article 1, Section 2:
 - "Representatives and direct Taxes shall be apportioned among the several States ... according to their respective Numbers ..."

- https://www2.census.gov/programssurveys/popest/datasets/
- <u>https://www2.census.gov/programs-</u> <u>surveys/popest/datasets/2010-</u> <u>2015/national/totals/</u>
- demo