# BC COMS 1016: Intro to Comp Thinking \& Data Science 

Lecture 4
Arrays, Sequences, Tables

## Thursday 01/27/22

## Reminders

- HW00 due tonight
- Individual assignment
- Only 41 submissions (as of10am today)
- You can use 2 late days
- Lab01 due Monday
- Lab00:
- If you havent gotten it in yet, do it before the other assignments
- HW01
- Will be released tonight
- Due Thursday 02/03


## Office Hours \& Next few classes

- Today:
- Adam 1pm-2pm after class
- Next week:
- Tuesday still remote
- Thursday TBD
- Tuesday Feb $8^{\text {th }}$ :
- TA review or watch last year's recording or no class
- Your choice


## Gradescope - Results vs Code View

Results
Code

## STUDENT

Adam Poliak

Results
Code

AUTOGRADER SCORE

- / 16.0

QUESTION 2
Question 1

- / 2.0 pts

QUESTION 3
Question $4.3 \quad-/ 1.0$ pts

QUESTION 4
Question $6.1 \quad-/ 2.0$ pts

QUESTION 5
Question $6.2 \quad-/ 1.0 \mathrm{pts}$

QUESTION 6
Question $6.3 \quad-/ 1.0$ pts

QUESTION 7
Question $6.4 \quad-/ 1.0 \mathrm{pts}$

QUESTION 8
Question $9.2 \quad-/ 0.0$ pts
,

## student

Adam Poliak

## AUTOGRADER SCORE

- / 16.0


## FAILED TESTS

q2_1 - Public (0.0/1.0)
q2_2 - Public (0.0/1.0)
q3_1 - Public (0.0/1.0)
q3_2 - Public (0.0/1.0)
q3_3 - Public (0.0/1.0)
q4_1 - Public (0.0/1.0)
q4_2 - Public (0.0/1.0)
q5_1 - Public (0.0/1.0)
q5_2 - Public (0.0/1.0)
q5_3 - Public (0.0/3.0)
q5_4 - Public (0.0/1.0)
q8_1 - Public (0.0/1.0)
q7_1 - Public (0.0/1.0)
PASSED TESTS
q9_1 - Public (0.0/0.0)
QUESTION 2
Question 1 - / 2.0 pts

## QUESTION 3

Question 4.3

- / 1.0 pts

QUESTION 4
Question 6.1

QUESTION 5
Question 6.2

## Course Outline

- Exploration
- Introduction to Python
- Working with data
- Inference
- Probability
- Statistics
- Prediction
- Machine Learning
- Regression \& Classification


## Week 1-5

Week 6-10

Week 11-14

## Course Outline

- Exploration


## Week 1-5

- Discover patterns
- Articulate insights
- Inference

Week 6-10

- Make reliable conclusions about the world
- Statistics is useful
- Prediction

Week 11-14

- Informed guesses about unseen data


## Types - Every value has a type

We've seen 5 types so far:

- int: 2
- float: 2.2
- str: 'Red fish, blue fish'
- builtin_function_or_method: abs, max, min
- Table



## Table Structure

- A Table is a sequence of labeled columns
- Row: represents one individual
- Column: represents one attribute of the individuals

| Name | Code | Area (m2) |
| :--- | :--- | :--- |
| California | CA | 163696 |
| Nevada | NV | 110567 |

## Table methods

- Creating and extending tables:
- Table().with_column and Table.read_table
- Finding the size:
- num_rows, num_columns
- Referring to columns: labels, relabeling and indices
- labels and relabeled; column indices start at 0

Tables - select and drop

- t.select(...) - constructs a new table with just the specified columns
- t.drop(...) - constructs a new table in which the specified columns are omitted
- These operations create a new table


## Tables - select and drop

- .select(<Column Name>)
- Returns a new table with the specified columns
- . select(<lnt i>)
- Returns a new table with the column at index I
- drop(<Column Name>)
- Returns a new table without the specified columns
-. .drop(<Int i>)
- Returns a new table without the column at index i


## Some Table Operations

- t.sort(label) - constructs a new table with rows sorted by the specified column
- t.where(label, condiction) - constructs a new table with just the rows that match the condition
- More are listed at http://coms1016.barnard.edu/pythonreference.html


## Array

An array contains a sequence of values

- All elements of an array should have the same type
- Arithmetic is applied to each element individually
- Adding arrays add elements (if same length!)
- A column of a table is in an array
- All values in a single column are the same type


## Ranges

A range is an array of consecutive numbers

- np.arange(end):

An array of increasing integers from 0 up to end

- np.arange(start, end):

An array of increasing integers from start up to end

- np.arrange(start, end, step):

A range with step between consecutive values

The range always include start but excludes end

## Array Functions \& Methods

| Name | Chapter | Description |
| :---: | :---: | :---: |
| max(array) | 3.3 | Returns the maximum value of an array |
| min(array) | 3.3 | Returns the minimum value of an array |
| sum(array) | 3.3 | Returns the sum of the values in an array |
| abs(num), np.abs(array) | 3.3 | Take the absolute value of number or each number in an array. |
| round(num), np.round(array) | 3.3 | Round number or array of numbers to the nearest integer. |
| len(array) | 3.3 | Returns the length (number of elements) of an array |
| make_array(val1, val2, ...) | 5 | Makes a numpy array with the values passed in |
| np.average(array) np.mean(array) | 5.1 | Returns the mean value of an array |
| np.std(array) | 14.2 | Returns the standard deviation of an array |
| np.diff(array) | 5.1 | Returns a new array of size len (arr)-1 with elements equal to the difference between adjacent elements; val_2-val_1, val_3 - val_2, etc. |
| np.sqrt(array) | 5.1 | Returns an array with the square root of each element |
| np.arange(start, stop, step) np.arange(start, stop) np.arange(stop) | 5.2 | An array of numbers starting with start, going up in increments of step, and going up to but excluding stop. When start and/or step are left out, default values are used in their place. Default step is 1 ; default start is 0 . |
| array.item(index) | 5.3 | Returns the i-th item in an array (remember Python indices start at 0!) |
| np.random.choice(array, n) np.random. choice(array) | 9 | Picks one (by default) or some number ' $n$ ' of items from an array at random. By default, with replacement. |
| np.count_nonzero(array) | 9 | Returns the number of non-zero (or True ) elements in an array. |
| np.append(array, item) | 9.2 | Returns a copy of the input array with item (must be the same type as the other entries in the array) appended to the end. |
| percentile(percentile, array) | 13.1 | Returns the corresponding percentile of an array. |

## Tables \& Arrays

## Table methods

- Accessing data in a column
- Column takes a label or index and returns an array
- Using array methods to work with data in columns
- item, sum, min, max, and so on
- Creating new tables containing some of the original columns
- select, drop



## Questions:

## The table nba has columns

## PLAYER, POSITION, and SALARY

table $=$ Table.read_table('https://www.inferentialthinking.com/data/nba_salaries.csv')

1. Create an array containing the names of all centers (C) who make more than \$15M/year
```
centers = table.where('POSITION', 'C')
centers.where('\'15-\'16 SALARY', are.above(15)).column('PLAYER')
```

Answer:
'Dwight Howard', 'Roy Hibbert', 'Marc Gasol', 'Enes Kanter', 'DeMarcus Cousins'


## Types of Attributes

All values in a column of a table should be both the same type and be comparable to each other

- Numerical - values are from a numerical scale
- Numerical measurements are ordered
- Differences are meaningful
- Categorical - values from a fixed inventory
- May or may not have an ordering
- Categories are the same or different


## Numerical Attributes

Values as numbers are not guaranteed to be numerical

- Census example: SEX code (0, 1, 2)
- Arithmetic on these "numbers" is meaningless
- The variable SEX is still categorical, even though numbers were used for the categories


## Census Data

## The Decennial Census

- Every ten years, Census Bureau counts how many people there are in the U.S.
- Census Bureau estimates how many people are in US during the other 9 years
- U.S. Constitution Article 1, Section 2:
- "Representatives and direct Taxes shall be apportioned among the several States ... according to their respective Numbers ..."
- https://www2.census.gov/programssurveys/popest/datasets/
- https://www2.census.gov/programs-surveys/popest/datasets/2010-
2015/national/totals/
- demo

