BC COMS 1016: Intro to Comp Thinking & Data Science

Lecture 6 – Histograms and Functions

Copyright © 2016 Barnard College

Announcements

- Lab02 (Data Types and Arrays)
 - Due Monday night (Friday 07)
- HW01 Arrays & Tables
 - Due Monday night (Feb 07)
- HW02 <u>Table Manipulation & Visualization</u>:
 - Due Thursday night (Feb 10)
- No class Tuesday (Feb 08)

- Cancelling midterm
- 3 Projects

Projects – Paired assignments

• 3 projects:

- Flexible grading scheme weight based on scores
 - Best performing one will count as "midterm"
 - Remaining two will count as 20% in "project" from first lecture

- Exploration Project
 - Released end of next week
 - Due 2 weeks later
 - HW3 & HW4 are on the shorter side

Visualization Review

Line plots

Sequential data

Scatter plots

- Finding associations
- Bar plots
 - Categorical distributions

Line graph plot

Scatter plot scatter

Line vs Scatter plot: When to use which?

Use line plots for sequential data if

- x-axis has an order
- sequential differences in y values are meaningful
- there's only one y-value for each x-value
- usually: x-axis is time or distance
- Use scatter plots
 - when looking for associations

- Display relationship between categorical variable and a numerical variable
- Display a categorical distribution

top_movies = Table.read_table('top_movies_2017.csv') top_movies

Title	Studio	Gross	Gross (Adjusted)	Year
Gone with the Wind	MGM	198676459	1796176700	1939
Star Wars	Fox	460998007	1583483200	1977
The Sound of Music	Fox	158671368	1266072700	1965
E.T.: The Extra-Terrestrial	Universal	435110554	1261085000	1982
Titanic	Paramount	658672302	1204368000	1997
The Ten Commandments	Paramount	65500000	1164590000	1956
Jaws	Universal	26000000	1138620700	1975
Doctor Zhivago	MGM	111721910	1103564200	1965
The Exorcist	Warner Brothers	232906145	983226600	1973
Snow White and the Seven Dwarves	Disney	184925486	969010000	1937

- Distribution of a variable describes the frequencies of the values
- The group method counts the number of values in the column
- Bar chart displays the distribution of categorical variable:
 - One bar per category/value
 - Length of bar is the count of individuals in that category

Area Principle

and and the

Copyright © 2016 Barnard College

Areas should be proportional to values they represent

- If you represent 20% by
- 40% should be represented by
- and not by

Area Principle – 2016 Election Map

Area Principle – 2016 Election Map

https://www.wired.com/story/is-us-leaning-red-or-blueelection-maps/

- Binning coverts a numerical distribution to a categorical distribution
- Binning counts the number of numerical values that lie within a range, aka a bin
- Bins contain:
 - A lower bound (inclusive)
 - An upper bound (exclusive)

Bins - Example

Bins contain:

- A lower bound (inclusive)
- An upper bound (exclusive)

188, 170, 189, 163, 183, 171, 185, 168, 173, ...

Chart that displays the distribution of a numerical variable

Uses bins; there is one bar corresponding to each bin

Uses the area principle:

 The *area* of each bar is the percent of individuals in the corresponding bin

Understanding Histograms

- Axes
- Height
- Area

- By default, hist uses a scale (normed=True) that ensures the area of the chart sums to 100%
- The **area** of each bar is a percentage of the whole
- The horizontal (x-) axis is a number line (e.g., years), and the bins sizes don't have to be equal to each other
- The vertical axis is a rate (e.g., percent per year)

Histogram Height (of a bin)

- Height measures density
- the percent of data in the bin relative to the amount of space in the bin
- Units: percent per unit on the horizontal axis

- Area tells us what percent of all data is in a bin
- Area of a bar = Height times width of a bin
 - *"How many individuals in the bin?"* Use area.
 - "How crowded is the bin?" Use height

Bar Chart or Histogram?

Bar Chart

- Distribution of categorical variable
- Bars have arbitrary (but equal) widths and spacings
- height (or length) and area of bars proportional to the percent of individuals

<u>Histogram</u>

- Distribution of numerical variable
- Horizontal axis is numerical: to scale, no gaps, bins can be unequal
- Area of bars proportional to the percent of individuals; height measures density

Eurocations Burnelling

weller and and

P

Copyright © 2016 Barnard College

Anatomy of a Function

Name

- Parameters / Argument Names
- Body
- Return Expression

def sread(values): spread_val = max(values) - min(values) return spread_val

Example Function

def f(s): return np.round(s / sum(s) * 100, 2)

What kind of input does it take?

- What output will it give?
- What's a reasonable name?