BC COMS 1016: Intro to Comp Thinking \& Data Science

Lecture 6-1Histograms

 and Functions

Announcements

- Lab02 (Data Types and Arrays)
- Due Monday night (Friday 07)
- HW01 - Arrays \& Tables
- Due Monday night (Feb 07)
- HW02 - Table Manipulation \& Visualization:
- Due Thursday night (Feb 10)
- No class Tuesday (Feb 08)

Projects

- Cancelling midterm

- 3 Projects

Projects - Paired assignments

- 3 projects:
- Flexible grading scheme - weight based on scores
- Best performing one will count as "midterm"
- Remaining two will count as 20% in "project" from first lecture
- Exploration Project
- Released end of next week
- Due 2 weeks later
- HW3 \& HW4 are on the shorter side

Visualization Review

- Line plots
- Sequential data
- Scatter plots
- Finding associations
- Bar plots
- Categorical distributions

Plotting Numerical data

Line graph plot

Scatter plot scatter

Line vs Scatter plot: When to use which?

- Use line plots for sequential data if
- x-axis has an order
- sequential differences in y values are meaningful
- there's only one y-value for each x-value
- usually: x-axis is time or distance
- Use scatter plots
- when looking for associations

Bar Plots

- Display relationship between categorical variable and a numerical variable
- Display a categorical distribution

Bar Charts

```
top_movies = Table.read_table('top_movies_2017.csv')
top_movies
```

| Title | Studio | Gross | Gross (Adjusted) | Year |
| ---: | ---: | ---: | ---: | ---: | ---: |
| Gone with the Wind | MGM | 198676459 | 1796176700 | 1939 |
| Star Wars | Fox | 460998007 | 1583483200 | 1977 |
| The Sound of Music | Fox | 158671368 | 1266072700 | 1965 |
| E.T.: The Extra-Terrestrial | Universal | 435110554 | 1261085000 | 1982 |
| Titanic | Paramount | 658672302 | 1204368000 | 1997 |
| The Ten Commandments | Paramount | 65500000 | 1164590000 | 1956 |
| Jaws | Universal | 260000000 | 1138620700 | 1975 |
| Doctor Zhivago | MGM | 111721910 | 1103564200 | 1965 |
| The Exorcist | Warner Brothers | 232906145 | 983226600 | 1973 |
| Snow White and the Seven Dwarves | Disney | 184925486 | 969010000 | 1937 |

Bar plot

```
: top10_adjusted.barh('Title', 'Millions')
```


Displaying a Categorical Distribution

- Distribution of a variable describes the frequencies of the values
- The group method counts the number of values in the column
- Bar chart displays the distribution of categorical variable:
- One bar per category/value
- Length of bar is the count of individuals in that category

Area Principle

Areas should be proportional to values they represent

- If you represent 20% by

- 40% should be represented by

- and not by

Area Principle - 2016 Election Map

Area Principle - 2016 Election Map

https://www.wired.com/story/is-us-leaning-red-or-blue-election-maps/

Plotting Numerical Distributions

- Binning coverts a numerical distribution to a categorical distribution
- Binning counts the number of numerical values that lie within a range, aka a bin
- Bins contain:
- A lower bound (inclusive)
- An upper bound (exclusive)

Bins - Example

- Bins contain:
- A lower bound (inclusive)
- An upper bound (exclusive)
$188,170,189,163,183,171,185,168,173, \ldots$

Histogram

Chart that displays the distribution of a numerical variable

Uses bins; there is one bar corresponding to each bin

Uses the area principle:

- The area of each bar is the percent of individuals in the corresponding bin

Understanding Histograms

- Axes
- Height
- Area

Histogram Axis

- By default, hist uses a scale (normed=True) that ensures the area of the chart sums to 100%
- The area of each bar is a percentage of the whole
- The horizontal ($x-$) axis is a number line (e.g., years), and the bins sizes don't have to be equal to each other
- The vertical axis is a rate (e.g., percent per year)

Histogram Height (of a bin)

\% in bin

Height =

width of bin

- Height measures density
- the percent of data in the bin relative to the amount of space in the bin
- Units: percent per unit on the horizontal axis

Histogram Area (of a bar)

- Area tells us what percent of all data is in a bin
- Area of a bar = Height times width of a bin
- "How many individuals in the bin?" Use area.
- "How crowded is the bin?" Use height

Bar Chart or Histogram?

Bar Chart

Histogram

- Distribution of categorical variable
- Bars have arbitrary (but equal) widths and spacings
- height (or length) and area of bars proportional to the percent of individuals
- Distribution of numerical variable
- Horizontal axis is numerical: to scale, no gaps, bins can be unequal
- Area of bars proportional to the percent of individuals; height measures density

Anatomy of a Function

- Name
- Parameters / Argument Names
- Body
- Return Expression

Example Function

def sread(values): spread_val = max(values) - min(values) return spread_val

Example Function

What does this function do?

def $f(s):$ return np.round(s / sum(s) * 100, 2)

- What kind of input does it take?
- What output will it give?
- What's a reasonable name?

