BC COMS 1016:
Intro to Comp Thinking & Data Science

Lecture 7 — Functions

Copyright © 2016 Barnard College



Announcements

HWO02 - Table Manipulation & Visualization:
 Due Monday (02/14)

Lab 03 - Functions and Visualizations
 Due Monday (02/14)

= HWO3 - Functions, Histograms, and Groups
 Due Monday (02/21)

= Checkpoint/Project 1:

» Paired assignment that covers the previous section of the course
material

» Released tonight or tomorrow and due 2 weeks (Friday 02/25)

Copyright © 2016 Barnard College 2


http://jupyterhub.coms1016.barnard.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2FBC-COMS-1016%2Fmaterials-f20&urlpath=tree%2Fmaterials-f20%2Fhomeworks%2Fhw02%2Fhw02.ipynb&branch=master
https://coms1016.barnard.edu/schedule.html
http://jupyterhub.coms1016.barnard.edu/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2FBC-COMS-1016%2Fmaterials-f20&urlpath=tree%2Fmaterials-f20%2Fhomeworks%2Fhw03%2Fhw03.ipynb&branch=master




Anatomy of a Function

= Name

= Parameters / Argument Names

= Body

= Return Expression

Copyright © 2016 Barnard College 4



Example Function

def sread(values):
spread val = max(values) - min(values)
return spread val

Copyright © 2016 Barnard College 5



Example Function - Name

\l A =

\
def [sread|(values):
spread val = max(values) - min(values)

return spread val

Copyright © 2016 Barnard College 6



Example Function — Argument Names/Parameters {B}

N
def [sread}([values )J :
spread val = max(values) - min(values)

return spread val

Copyright © 2016 Barnard College 7



Example Function - Body

N
def [sread|values):

spread val = max(values) - min(values?

return spread val

T~

DOUYV

Copyright © 2016 Barnard College 8



Example Function — Return expression

\
def [sread|values):

spread val = max(values) - min(values)}

\

Copyright © 2016 Barnard College 9



What does this function do?

def f(s):
return np.round(s / sum(s) * 100, 2)

= \WWhat kind of input does it take?
= What output will it give?
= \What's a reasonable name?

Copyright © 2016 Barnard College 10



Applying Functions to Columns

The method creates an array by calling a
function on every element in input column(s)

* First argument: Function to apply

e Other arguments: The input column(s)

Copyright © 2016 Barnard College 11



Grouping by One Column

The method aggregates all rows with the

same value for a column into a single row in the
resulting table.

* First argument: Which column to group by
« Second argument: (Optional) How to combine values

: — number of grouped values (default)
E — list of all grouped values
: — total of all grouped values

Copyright © 2016 Barnard College 12



Lists as Generic Sequences

A list is a sequence of values (just like an array),
but the values can all have different types

= |ists can be used to create table rows.

= |[f you create a table column from a list, it will be
converted to an array automatically

Copyright © 2016 Barnard College 13



Grouping by Multiple Columns

The method can also aggregate all rows

that share the combination of values in multiple
columns

= First argument: A list of which columns to group
by

= Second argument: (Optional) How to combine
values

Copyright © 2016 Barnard College 14



Pivot Tables {:E}

= Cross-classifies according to two categorical
variables

= Produces a grid of counts or aggregated values

= Two required arguments:

 First: variable that forms column labels of grid
e Second: variable that forms row labels of grid

= Two optional arguments (include both or
neither)

n ='column_label to aggregate’
: =function_to_aggregate with

Copyright © 2016 Barnard College 15



Group vs Pivot

Pivot Group

= One combo of grouping = One combo of grouping
variables per entry variables per row

= Two grouping = Any number of grouping
variables: columns and variables
rows = Aggregate values of all

= Aggregate values of other columns in table
values column = Missing combos absent

= Missing combos =0
(or empty string)

Copyright © 2016 Barnard College 16



Joining Two Tables

Copyright © 2016 Barnard College 17



Tomorrow’s Reading

= Chapter 9.1 — 9.3

= Conditionals & Randomness

Copyright © 2016 Barnard College 18



